Module clingo.control

This module contains the Control class responsible for controling grounding and solving.

Examples

The following example shows the basic ground solve process:

>>> from clingo.symbol import Number
>>> from clingo.control import Control
>>>
>>> ctl = Control()
>>> ctl.add("q.")
>>>
>>> ctl.ground()
>>> print(ctl.solve(on_model=print))
q
SAT

The following example shows basic (multishot) grounding and solving:

>>> from clingo.symbol import Number
>>> from clingo.control import Control
>>>
>>> ctl = Control()
>>> ctl.add("a", [], "q.")
>>> ctl.add("b", ["t"], "q(t).")
>>>
>>> ctl.ground([("a", [])])
>>> print(ctl.solve(on_model=print))
q
SAT
>>> ctl.ground([("b", [Number(1)]), ("b", [Number(2)])])
>>> print(ctl.solve(on_model=print))
q q(1) q(2)
SAT
>>> ctl.ground([("b", [Number(3)])])
>>> print(ctl.solve(on_model=print))
q q(1) q(2) q(3)
SAT

Classes

class BackendType (*args, **kwds)
Expand source code
class BackendType(IntEnum):
    """
    Enumeration of available backends.
    """

    Aspif = _lib.clingo_backend_type_aspif
    """
    The aspif Backend.
    """
    Smodels = _lib.clingo_backend_type_smodels
    """
    The smodels backend.
    """
    Reify = _lib.clingo_backend_type_reify
    """
    The reify backend.
    """

Enumeration of available backends.

Ancestors

  • enum.IntEnum
  • builtins.int
  • enum.ReprEnum
  • enum.Enum

Class variables

var Aspif

The aspif Backend.

var Reify

The reify backend.

var Smodels

The smodels backend.

class Control (arguments: Sequence[str] = [],
logger: Callable[[MessageCode, str], None] | None = None,
message_limit: int = 20)
Expand source code
class Control:
    """
    Control object for the grounding/solving process.

    Parameters
    ----------
    arguments
        Arguments to the grounder and solver.
    logger
        Function to intercept messages normally printed to standard error.
    message_limit
        The maximum number of messages passed to the logger.

    Notes
    -----
    Note that only gringo options (without `--text`) and clasp's search options
    are supported. Furthermore, you must not call any functions of a `Control`
    object while a solve call is active.
    """

    def __init__(
        self,
        arguments: Sequence[str] = [],
        logger: Optional[Logger] = None,
        message_limit: int = 20,
    ):
        # pylint: disable=protected-access,dangerous-default-value
        self._free = False
        self._mem = []
        if isinstance(arguments, abc.Sequence):
            if logger is not None:
                c_handle = _ffi.new_handle(logger)
                c_cb = _lib.pyclingo_logger_callback
                self._mem.append(c_handle)
            else:
                c_handle = _ffi.NULL
                c_cb = _ffi.NULL
            c_mem = []
            c_args = _ffi.new("char*[]", len(arguments))
            for i, arg in enumerate(arguments):
                c_mem.append(_ffi.new("char[]", arg.encode()))
                c_args[i] = c_mem[-1]
            self._rep = _c_call(
                "clingo_control_t *",
                _lib.clingo_control_new,
                c_args,
                len(arguments),
                c_cb,
                c_handle,
                message_limit,
            )
            self._free = True
        else:
            self._rep = arguments

        self._handler = None
        self._statistics = None
        self._statistics_call = -1.0
        self._error = _Error()

    def __del__(self):
        if self._free:
            _lib.clingo_control_free(self._rep)

    @overload
    def add(self, name: str, parameters: Sequence[str], program: str) -> None:
        """
        Extend the logic program with the given non-ground logic program in string form.

        Parameters
        ----------
        name
            The name of program block to add.
        parameters
            The parameters of the program block to add.
        program
            The non-ground program in string form.

        See Also
        --------
        Control.ground
        """

    @overload
    def add(self, program: str) -> None:
        """
        Extend the logic program with the given non-ground logic program in string form.

        Parameters
        ----------
        name
            The name of program block to add.

        Notes
        -----
        This function is equivalent to calling `add("base", [], program)`.
        """

    def add(self, *args, **kwargs) -> None:
        """
        Extend the logic program with the given non-ground logic program in string form.

        This function provides two overloads:

        ```python
        def add(self, name: str, parameters: Sequence[str], program: str) -> None:
            ...

        def add(self, program: str) -> None:
            return self.add("base", [], program)
        ```

        Parameters
        ----------
        name
            The name of program block to add.
        parameters
            The parameters of the program block to add.
        program
            The non-ground program in string form.

        See Also
        --------
        Control.ground
        """
        n = len(args) + len(kwargs)
        if n == 1:
            self._add1(*args, **kwargs)
        else:
            self._add2(*args, **kwargs)

    def _add1(self, program: str) -> None:
        self._add2("base", [], program)

    def _add2(self, name: str, parameters: Sequence[str], program: str) -> None:
        c_mem = []
        c_params = _ffi.new("char*[]", len(parameters))
        for i, param in enumerate(parameters):
            c_mem.append(_ffi.new("char[]", param.encode()))
            c_params[i] = c_mem[-1]
        _handle_error(
            _lib.clingo_control_add(
                self._rep, name.encode(), c_params, len(parameters), program.encode()
            )
        )

    def _program_atom(self, lit: Union[Symbol, int]) -> int:
        if isinstance(lit, int):
            return lit
        satom = self.symbolic_atoms[lit]
        return 0 if satom is None else satom.literal

    def remove_minimize(self) -> None:
        """
        Remove all minimize constraints from the program.

        This function removes all minimize constraints that were previously added to the program.
        """
        _handle_error(_lib.clingo_control_remove_minimize(self._rep))

    def _update_project(
        self, atoms: Sequence[Union[Symbol, int]], append: bool
    ) -> None:
        p_proj = _ffi.new("clingo_atom_t[]", len(atoms))
        for i, lit in enumerate(atoms):
            p_proj[i] = self._program_atom(lit)

        _handle_error(
            _lib.clingo_control_update_project(self._rep, p_proj, len(atoms), append)
        )

    def add_project(self, atoms: Sequence[Union[Symbol, int]]) -> None:
        """
        Add atoms to project on to the program.

        Parameters
        ----------
        atoms
            List of atoms or program literals (see `clingo.symbolic_atoms.SymbolicAtom.literal`) to project on.

        Notes
        -----
        The function extends the set of atoms to project on with the given atoms.

        See Also
        --------
        Control.replace_project
        """
        self._update_project(atoms, append=True)

    def replace_project(self, atoms: Sequence[Union[Symbol, int]]) -> None:
        """
        Set atoms to project on.

        Parameters
        ----------
        atoms
           List of atoms or program literals (see `clingo.symbolic_atoms.SymbolicAtom.literal`) to project on.

        Notes
        -----
        The function sets the atoms to project on to the given atoms thereby replacing any previously added project
        statements.

        See Also
        --------
        Control.add_project
        """
        self._update_project(atoms, append=False)

    def remove_project(self) -> None:
        """
        Remove all projection atoms.

        See Also
        --------
        Control.add_project
        """
        self._update_project([], append=False)

    def assign_external(
        self, external: Union[Symbol, int], truth: Optional[bool]
    ) -> None:
        """
        Assign a truth value to an external atom.

        Parameters
        ----------
        external
            A symbol or program literal representing the external atom.
        truth
            A Boolean fixes the external to the respective truth value; and
            None leaves its truth value open.

        See Also
        --------
        Control.release_external, clingo.solving.SolveControl.symbolic_atoms,
        clingo.symbolic_atoms.SymbolicAtom.is_external

        Notes
        -----
        The truth value of an external atom can be changed before each solve
        call. An atom is treated as external if it has been declared using an
        `#external` directive, and has not been released by calling
        `Control.release_external` or defined in a logic program with some
        rule. If the given atom is not external, then the function has no
        effect.

        For convenience, the truth assigned to atoms over negative program
        literals is inverted.
        """

        if truth is None:
            val = _lib.clingo_external_type_free
        elif truth:
            val = _lib.clingo_external_type_true
        else:
            val = _lib.clingo_external_type_false
        _handle_error(
            _lib.clingo_control_assign_external(
                self._rep, self._program_atom(external), val
            )
        )

    def backend(self) -> Backend:
        """
        Returns a `Backend` object providing a low level interface to extend a
        logic program.

        See Also
        --------
        clingo.backend
        """
        return Backend(
            _c_call("clingo_backend_t*", _lib.clingo_control_backend, self._rep),
            self._error,
        )

    def cleanup(self) -> None:
        """
        Cleanup the domain used for grounding by incorporating information from
        the solver.

        This function cleans up the domain used for grounding.  This is done by
        first simplifying the current program representation (falsifying
        released external atoms).  Afterwards, the top-level implications are
        used to either remove atoms from the domain or mark them as facts.

        See Also
        --------
        Control.enable_cleanup

        Notes
        -----
        Any atoms falsified are completely removed from the logic program.
        Hence, a definition for such an atom in a successive step introduces a
        fresh atom.

        With the current implementation, the function only has an effect if
        called after solving and before any function is called that starts a
        new step.

        Typically, it is not necessary to call this function manually because
        automatic cleanups are enabled by default.
        """
        _handle_error(_lib.clingo_control_cleanup(self._rep))

    def get_const(self, name: str) -> Optional[Symbol]:
        """
        Return the symbol for a constant definition of form:

            #const name = symbol.

        Parameters
        ----------
        name
            The name of the constant to retrieve.

        Returns
        -------
        The function returns `None` if no matching constant definition exists.
        """
        if not _c_call("bool", _lib.clingo_control_has_const, self._rep, name.encode()):
            return None

        return Symbol(
            _c_call(
                "clingo_symbol_t",
                _lib.clingo_control_get_const,
                self._rep,
                name.encode(),
            )
        )

    def ground(
        self,
        parts: Sequence[Tuple[str, Sequence[Symbol]]] = (("base", ()),),
        context: Any = None,
    ) -> None:
        """
        Ground the given list of program parts specified by tuples of names and
        arguments.

        Parameters
        ----------
        parts
            List of tuples of program names and program arguments to ground.
        context
            A context object whose methods are called during grounding using
            the `@`-syntax (if omitted, those from the main module are used).

        Notes
        -----
        Note that parts of a logic program without an explicit `#program`
        specification are by default put into a program called `base` without
        arguments.
        """
        # pylint: disable=protected-access,dangerous-default-value
        self._error.clear()
        data = _CBData(context, self._error)
        c_data = _ffi.new_handle(data) if context else _ffi.NULL
        c_cb = _lib.pyclingo_ground_callback if context else _ffi.NULL

        c_mem = []
        c_parts = _ffi.new("clingo_part_t[]", len(parts))
        for part, c_part in zip(parts, c_parts):
            c_mem.append(_ffi.new("char[]", part[0].encode()))
            c_part.name = c_mem[-1]
            c_mem.append(_ffi.new("clingo_symbol_t[]", len(part[1])))
            c_part.params = c_mem[-1]
            for i, sym in enumerate(part[1]):
                c_part.params[i] = sym._rep
            c_part.size = len(part[1])

        _handle_error(
            _lib.clingo_control_ground(self._rep, c_parts, len(parts), c_cb, c_data),
            data,
        )

    def interrupt(self) -> None:
        """
        Interrupt the active solve call.

        Notes
        -----
        This function is thread-safe and can be called from a signal handler. If no
        search is active, the subsequent call to `Control.solve` is interrupted. The
        result of the `Control.solve` method can be used to query if the search was
        interrupted.
        """
        _lib.clingo_control_interrupt(self._rep)

    def load(self, path: str) -> None:
        """
        Extend the logic program with a (non-ground) logic program in a file.

        Parameters
        ----------
        path
            The path of the file to load.
        """
        _handle_error(_lib.clingo_control_load(self._rep, path.encode()))

    def load_aspif(self, files: Sequence[str]) -> None:
        """
        Extend the logic program with a program in aspif format.

        This function should be called on an empty control object. If more than
        one file is given, they are merged into one file. Only the first one
        should have a preamble.

        Parameters
        ----------
        files
            A list of files to load.
        """
        c_mem = []
        c_files = _ffi.new("char*[]", len(files))
        for i, path in enumerate(files):
            c_mem.append(_ffi.new("char[]", path.encode()))
            c_files[i] = c_mem[-1]
        _handle_error(_lib.clingo_control_load_aspif(self._rep, c_files, len(files)))

    def register_observer(self, observer: Observer, replace: bool = False) -> None:
        """
        Registers the given observer to inspect the produced grounding.

        Parameters
        ----------
        observer
            The observer to register. See below for a description of the required
            interface.
        replace
            If set to true, the output is just passed to the observer and no longer to
            the underlying solver (or any previously registered observers).

        See Also
        --------
        clingo.backend
        """
        # pylint: disable=protected-access,line-too-long
        c_observer = _ffi.new(
            "clingo_ground_program_observer_t*",
            (
                (
                    _lib.pyclingo_observer_init_program
                    if _overwritten(Observer, observer, "init_program")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_begin_step
                    if _overwritten(Observer, observer, "begin_step")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_end_step
                    if _overwritten(Observer, observer, "end_step")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_rule
                    if _overwritten(Observer, observer, "rule")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_weight_rule
                    if _overwritten(Observer, observer, "weight_rule")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_minimize
                    if _overwritten(Observer, observer, "minimize")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_project
                    if _overwritten(Observer, observer, "project")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_output_atom
                    if _overwritten(Observer, observer, "output_atom")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_output_term
                    if _overwritten(Observer, observer, "output_term")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_external
                    if _overwritten(Observer, observer, "external")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_assume
                    if _overwritten(Observer, observer, "assume")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_heuristic
                    if _overwritten(Observer, observer, "heuristic")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_acyc_edge
                    if _overwritten(Observer, observer, "acyc_edge")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_theory_term_number
                    if _overwritten(Observer, observer, "theory_term_number")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_theory_term_string
                    if _overwritten(Observer, observer, "theory_term_string")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_theory_term_compound
                    if _overwritten(Observer, observer, "theory_term_compound")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_theory_element
                    if _overwritten(Observer, observer, "theory_element")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_theory_atom
                    if _overwritten(Observer, observer, "theory_atom")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_observer_theory_atom_with_guard
                    if _overwritten(Observer, observer, "theory_atom_with_guard")
                    else _ffi.NULL
                ),
            ),
        )
        c_data = _ffi.new_handle(_CBData(observer, self._error))
        self._mem.append(c_data)
        _handle_error(
            _lib.clingo_control_register_observer(
                self._rep, c_observer, replace, c_data
            )
        )

    def register_backend(
        self,
        type: BackendType,
        file: str,
        replace: bool = False,
        reify_sccs: bool = False,
        reify_steps: bool = False,
    ) -> None:
        """
        Registers a backend of the given type.

        This function is similar to register_observer but instead registers a predefined backend.

        Parameters
        ----------
        type
            The type of backend to register.
        file:
            The path of the file to write to.
        replace
            If set to true, the output is just passed to the backend and no longer to
            the underlying solver (or any previously registered backends/observers).
        reify_sccs
            Whether to reify sccs.
        reify_steps
            Whether to reify steps.

        See Also
        --------
        clingo.backend
        """
        bitset = type.value
        if reify_sccs:
            bitset = bitset | _lib.clingo_backend_type_reify_sccs
        if reify_steps:
            bitset = bitset | _lib.clingo_backend_type_reify_steps
        _handle_error(
            _lib.clingo_control_register_backend(
                self._rep, bitset, file.encode(), replace
            )
        )

    def register_propagator(self, propagator: Propagator) -> None:
        """
        Registers the given propagator with all solvers.

        Parameters
        ----------
        propagator
            The propagator to register.

        See Also
        --------
        clingo.propagator
        """
        # pylint: disable=protected-access
        c_propagator = _ffi.new(
            "clingo_propagator_t*",
            (
                (
                    _lib.pyclingo_propagator_init
                    if _overwritten(Propagator, propagator, "init")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_propagator_propagate
                    if _overwritten(Propagator, propagator, "propagate")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_propagator_undo
                    if _overwritten(Propagator, propagator, "undo")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_propagator_check
                    if _overwritten(Propagator, propagator, "check")
                    else _ffi.NULL
                ),
                (
                    _lib.pyclingo_propagator_decide
                    if _overwritten(Propagator, propagator, "decide")
                    else _ffi.NULL
                ),
            ),
        )
        c_data = _ffi.new_handle(_CBData(propagator, self._error))
        self._mem.append(c_data)
        _handle_error(
            _lib.clingo_control_register_propagator(
                self._rep, c_propagator, c_data, False
            )
        )

    def release_external(self, external: Union[Symbol, int]) -> None:
        """
        Release an external atom represented by the given symbol or program
        literal.

        This function causes the corresponding atom to become permanently false
        if there is no definition for the atom in the program. Otherwise, the
        function has no effect.

        Parameters
        ----------
        external
            The symbolic atom or program atom to release.

        Notes
        -----
        If the program literal is negative, the corresponding atom is released.

        Examples
        --------
        The following example shows the effect of assigning and releasing and external
        atom.

            >>> from clingo.symbol import Function
            >>> from clingo.control import Control
            >>>
            >>> ctl = Control()
            >>> ctl.add("base", [], "a. #external b.")
            >>> ctl.ground([("base", [])])
            >>> ctl.assign_external(Function("b"), True)
            >>> print(ctl.solve(on_model=print))
            b a
            SAT
            >>> ctl.release_external(Function("b"))
            >>> print(ctl.solve(on_model=print))
            a
            SAT
        """
        _handle_error(
            _lib.clingo_control_release_external(
                self._rep, self._program_atom(external)
            )
        )

    # this assumes that overloads are matched in the order they appear
    # unfortunately, PEP0484 does not specify any kind of semantics just giving examples
    if sys.version_info >= (3, 8):

        @overload
        def solve(
            self,
            assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
            on_model: Optional[Callable[[Model], Optional[bool]]] = None,
            on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
            on_statistics: Optional[
                Callable[[StatisticsMap, StatisticsMap], None]
            ] = None,
            on_finish: Optional[Callable[[SolveResult], None]] = None,
            on_core: Optional[Callable[[Sequence[int]], None]] = None,
            on_last: Optional[Callable[[Model], None]] = None,
            *,
            yield_: Literal[False] = False,
            async_: Literal[False] = False,
        ) -> SolveResult: ...
        @overload
        def solve(
            self,
            assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
            on_model: Optional[Callable[[Model], Optional[bool]]] = None,
            on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
            on_statistics: Optional[
                Callable[[StatisticsMap, StatisticsMap], None]
            ] = None,
            on_finish: Optional[Callable[[SolveResult], None]] = None,
            on_core: Optional[Callable[[Sequence[int]], None]] = None,
            *,
            yield_: Literal[True],
            async_: bool = False,
        ) -> SolveHandle: ...
        @overload
        def solve(
            self,
            assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
            on_model: Optional[Callable[[Model], Optional[bool]]] = None,
            on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
            on_statistics: Optional[
                Callable[[StatisticsMap, StatisticsMap], None]
            ] = None,
            on_finish: Optional[Callable[[SolveResult], None]] = None,
            on_core: Optional[Callable[[Sequence[int]], None]] = None,
            *,
            yield_: bool = False,
            async_: Literal[True],
        ) -> SolveHandle: ...

    else:

        @overload
        def solve(
            self,
            assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
            on_model: Optional[Callable[[Model], Optional[bool]]] = None,
            on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
            on_statistics: Optional[
                Callable[[StatisticsMap, StatisticsMap], None]
            ] = None,
            on_finish: Optional[Callable[[SolveResult], None]] = None,
            on_core: Optional[Callable[[Sequence[int]], None]] = None,
            on_last: Optional[Callable[[Model], None]] = None,
        ) -> SolveResult: ...

    @overload
    def solve(
        self,
        assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
        on_model: Optional[Callable[[Model], Optional[bool]]] = None,
        on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
        on_statistics: Optional[Callable[[StatisticsMap, StatisticsMap], None]] = None,
        on_finish: Optional[Callable[[SolveResult], None]] = None,
        on_core: Optional[Callable[[Sequence[int]], None]] = None,
        on_last: Optional[Callable[[Model], None]] = None,
        yield_: bool = False,
        async_: bool = False,
    ) -> Union[SolveHandle, SolveResult]: ...

    def solve(
        self,
        assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
        on_model: Optional[Callable[[Model], Optional[bool]]] = None,
        on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
        on_statistics: Optional[Callable[[StatisticsMap, StatisticsMap], None]] = None,
        on_finish: Optional[Callable[[SolveResult], None]] = None,
        on_core: Optional[Callable[[Sequence[int]], None]] = None,
        on_last: Optional[Callable[[Model], None]] = None,
        yield_: bool = False,
        async_: bool = False,
    ) -> Union[SolveHandle, SolveResult]:
        """
        Starts a search.

        Parameters
        ----------
        assumptions
            List of (atom, boolean) tuples or program literals (see
            `clingo.symbolic_atoms.SymbolicAtom.literal`) that serve as
            assumptions for the solve call, e.g., solving under assumptions
            `[(Function("a"), True)]` only admits answer sets that contain atom `a`.
        on_model
            Optional callback for intercepting models.
            A `clingo.solving.Model` object is passed to the callback. The
            search can be interrupted from the model callback by returning
            False.
        on_unsat
            Optional callback to intercept lower bounds during optimization.
        on_statistics
            Optional callback to update statistics.
            The step and accumulated statistics are passed as arguments.
        on_finish
            Optional callback called once search has finished.
            A `clingo.solving.SolveResult` also indicating whether the solve
            call has been interrupted is passed to the callback.
        on_core
            Optional callback called with the assumptions that made a problem
            unsatisfiable.
        on_last
            Optional callback for getting the last model computed for a satisfiable problem.
            A `clingo.solving.Model` object is passed to the callback.
        yield_
            The resulting `clingo.solving.SolveHandle` is iterable yielding
            `clingo.solving.Model` objects.
        async_
            The solve call and the method `clingo.solving.SolveHandle.resume`
            of the returned handle are non-blocking.

        Returns
        -------
        The return value depends on the parameters. If either `yield_` or
        `async_` is true, then a handle is returned. Otherwise, a
        `clingo.solving.SolveResult` is returned.

        See Also
        --------
        clingo.solving

        Notes
        -----
        If neither `yield_` nor `async_` is set, the function returns a
        `clingo.solving.SolveResult` right away.

        In gringo or in clingo with lparse or text output enabled, this
        function just grounds and returns a `clingo.solving.SolveResult` where
        `clingo.solving.SolveResult.unknown` is true.

        If this function is used in embedded Python code, you might want to start
        clingo using the `--outf=3` option to disable all output from clingo.

        Asynchronous solving is only available in clingo with thread support
        enabled. Furthermore, the on_model and on_finish callbacks are called
        from another thread. To ensure that the methods can be called, make
        sure to not use any functions that block Python's GIL indefinitely.

        This function as well as blocking functions on the
        `clingo.solving.SolveHandle` release the GIL but are not thread-safe.
        """
        # pylint: disable=protected-access,dangerous-default-value
        self._error.clear()
        handler = _SolveEventHandler(on_model, on_unsat, on_statistics, on_finish)
        data = _CBData(handler, self._error)
        self._handler = _ffi.new_handle(data)

        p_ass = _ffi.NULL
        if assumptions:
            atoms = None
            p_ass = _ffi.new("clingo_literal_t[]", len(assumptions))
            for i, lit in enumerate(assumptions):
                if isinstance(lit, int):
                    p_ass[i] = lit
                else:
                    if atoms is None:
                        atoms = self.symbolic_atoms
                    atom = self.symbolic_atoms[lit[0]]
                    slit = -1 if atom is None else atom.literal
                    p_ass[i] = slit if lit[1] else -slit

        mode = 0
        if yield_:
            mode |= _lib.clingo_solve_mode_yield
        if async_:
            mode |= _lib.clingo_solve_mode_async

        handle = SolveHandle(
            _c_call(
                "clingo_solve_handle_t*",
                _lib.clingo_control_solve,
                self._rep,
                mode,
                p_ass,
                len(assumptions),
                _lib.pyclingo_solve_event_callback,
                self._handler,
                handler=data,
            ),
            data,
        )

        if not yield_ and not async_:
            with handle:
                ret = handle.get()
                if on_core is not None and ret.unsatisfiable:
                    on_core(handle.core())
                if on_last is not None:
                    m = handle.last()
                    if m is not None:
                        on_last(m)
                return ret
        return handle

    @property
    def configuration(self) -> Configuration:
        """
        Object to change the configuration.
        """
        conf = _c_call(
            "clingo_configuration_t*", _lib.clingo_control_configuration, self._rep
        )
        key = _c_call("clingo_id_t", _lib.clingo_configuration_root, conf)
        return Configuration(conf, key)

    @property
    def enable_cleanup(self) -> bool:
        """
        Whether to enable automatic calls to `Control.cleanup`.
        """
        return _lib.clingo_control_get_enable_cleanup(self._rep)

    @enable_cleanup.setter
    def enable_cleanup(self, value: bool) -> None:
        _handle_error(_lib.clingo_control_set_enable_cleanup(self._rep, value))

    @property
    def enable_enumeration_assumption(self) -> bool:
        """
        Whether to discard or keep learnt information from enumeration modes.

        If the enumeration assumption is enabled, then all information learnt from
        clasp's various enumeration modes is removed after a solve call. This includes
        enumeration of cautious or brave consequences, enumeration of answer sets with
        or without projection, or finding optimal models; as well as clauses added with
        `clingo.solving.SolveControl.add_clause`.

        Notes
        -----
        Initially the enumeration assumption is enabled.

        In general, the enumeration assumption should be enabled whenever there are
        multiple calls to solve. Otherwise, the behavior of the solver will be
        unpredictable because there are no guarantees which information exactly is
        kept. There might be small speed benefits when disabling the enumeration
        assumption for single shot solving.
        """
        return _lib.clingo_control_get_enable_enumeration_assumption(self._rep)

    @enable_enumeration_assumption.setter
    def enable_enumeration_assumption(self, value: bool) -> None:
        _handle_error(
            _lib.clingo_control_set_enable_enumeration_assumption(self._rep, value)
        )

    @property
    def is_conflicting(self) -> bool:
        """
        Whether the internal program representation is conflicting.

        If this (read-only) property is true, solve calls return immediately with an
        unsatisfiable solve result.

        Notes
        -----
        Conflicts first have to be detected, e.g., initial unit propagation results in
        an empty clause, or later if an empty clause is resolved during solving. Hence,
        the property might be false even if the problem is unsatisfiable.
        """
        return _lib.clingo_control_is_conflicting(self._rep)

    @property
    def statistics(self) -> dict:
        """
        A `dict` containing solve statistics of the last solve call.

        See Also
        --------
        clingo.statistics

        Notes
        -----
        The statistics correspond to the `--stats` output of clingo. The detail of the
        statistics depends on what level is requested on the command line. Furthermore,
        there are some functions like `Control.release_external` that start a new
        solving step resetting the current step statistics. It is best to access the
        statistics right after solving.

        This property is only available in clingo.
        """
        stats = _c_call(
            "clingo_statistics_t*", _lib.clingo_control_statistics, self._rep
        )

        p_key = _ffi.new("uint64_t*")
        key_root = _c_call(p_key, _lib.clingo_statistics_root, stats)

        key_summary = _c_call(
            p_key, _lib.clingo_statistics_map_at, stats, key_root, "summary".encode()
        )
        key_call = _c_call(
            p_key, _lib.clingo_statistics_map_at, stats, key_summary, "call".encode()
        )
        call = _c_call("double", _lib.clingo_statistics_value_get, stats, key_call)
        if self._statistics is not None and call != self._statistics_call:
            self._statistics = None

        if self._statistics is None:
            self._statistics_call = call
            self._statistics = _statistics(stats, key_root)

        return cast(dict, self._statistics)

    @property
    def symbolic_atoms(self) -> SymbolicAtoms:
        """
        An object to inspect the symbolic atoms.

        See Also
        --------
        clingo.symbolic_atoms
        """
        return SymbolicAtoms(
            _c_call(
                "clingo_symbolic_atoms_t*",
                _lib.clingo_control_symbolic_atoms,
                self._rep,
            )
        )

    @property
    def theory_atoms(self) -> Iterator[TheoryAtom]:
        """
        An iterator over the theory atoms in a program.

        See Also
        --------
        clingo.theory_atoms
        """
        atoms = _c_call(
            "clingo_theory_atoms_t*", _lib.clingo_control_theory_atoms, self._rep
        )
        size = _c_call("size_t", _lib.clingo_theory_atoms_size, atoms)

        for idx in range(size):
            yield TheoryAtom(atoms, idx)

Control object for the grounding/solving process.

Parameters

arguments
Arguments to the grounder and solver.
logger
Function to intercept messages normally printed to standard error.
message_limit
The maximum number of messages passed to the logger.

Notes

Note that only gringo options (without --text) and clasp's search options are supported. Furthermore, you must not call any functions of a Control object while a solve call is active.

Instance variables

prop configurationConfiguration
Expand source code
@property
def configuration(self) -> Configuration:
    """
    Object to change the configuration.
    """
    conf = _c_call(
        "clingo_configuration_t*", _lib.clingo_control_configuration, self._rep
    )
    key = _c_call("clingo_id_t", _lib.clingo_configuration_root, conf)
    return Configuration(conf, key)

Object to change the configuration.

prop enable_cleanup : bool
Expand source code
@property
def enable_cleanup(self) -> bool:
    """
    Whether to enable automatic calls to `Control.cleanup`.
    """
    return _lib.clingo_control_get_enable_cleanup(self._rep)

Whether to enable automatic calls to Control.cleanup().

prop enable_enumeration_assumption : bool
Expand source code
@property
def enable_enumeration_assumption(self) -> bool:
    """
    Whether to discard or keep learnt information from enumeration modes.

    If the enumeration assumption is enabled, then all information learnt from
    clasp's various enumeration modes is removed after a solve call. This includes
    enumeration of cautious or brave consequences, enumeration of answer sets with
    or without projection, or finding optimal models; as well as clauses added with
    `clingo.solving.SolveControl.add_clause`.

    Notes
    -----
    Initially the enumeration assumption is enabled.

    In general, the enumeration assumption should be enabled whenever there are
    multiple calls to solve. Otherwise, the behavior of the solver will be
    unpredictable because there are no guarantees which information exactly is
    kept. There might be small speed benefits when disabling the enumeration
    assumption for single shot solving.
    """
    return _lib.clingo_control_get_enable_enumeration_assumption(self._rep)

Whether to discard or keep learnt information from enumeration modes.

If the enumeration assumption is enabled, then all information learnt from clasp's various enumeration modes is removed after a solve call. This includes enumeration of cautious or brave consequences, enumeration of answer sets with or without projection, or finding optimal models; as well as clauses added with SolveControl.add_clause().

Notes

Initially the enumeration assumption is enabled.

In general, the enumeration assumption should be enabled whenever there are multiple calls to solve. Otherwise, the behavior of the solver will be unpredictable because there are no guarantees which information exactly is kept. There might be small speed benefits when disabling the enumeration assumption for single shot solving.

prop is_conflicting : bool
Expand source code
@property
def is_conflicting(self) -> bool:
    """
    Whether the internal program representation is conflicting.

    If this (read-only) property is true, solve calls return immediately with an
    unsatisfiable solve result.

    Notes
    -----
    Conflicts first have to be detected, e.g., initial unit propagation results in
    an empty clause, or later if an empty clause is resolved during solving. Hence,
    the property might be false even if the problem is unsatisfiable.
    """
    return _lib.clingo_control_is_conflicting(self._rep)

Whether the internal program representation is conflicting.

If this (read-only) property is true, solve calls return immediately with an unsatisfiable solve result.

Notes

Conflicts first have to be detected, e.g., initial unit propagation results in an empty clause, or later if an empty clause is resolved during solving. Hence, the property might be false even if the problem is unsatisfiable.

prop statistics : dict
Expand source code
@property
def statistics(self) -> dict:
    """
    A `dict` containing solve statistics of the last solve call.

    See Also
    --------
    clingo.statistics

    Notes
    -----
    The statistics correspond to the `--stats` output of clingo. The detail of the
    statistics depends on what level is requested on the command line. Furthermore,
    there are some functions like `Control.release_external` that start a new
    solving step resetting the current step statistics. It is best to access the
    statistics right after solving.

    This property is only available in clingo.
    """
    stats = _c_call(
        "clingo_statistics_t*", _lib.clingo_control_statistics, self._rep
    )

    p_key = _ffi.new("uint64_t*")
    key_root = _c_call(p_key, _lib.clingo_statistics_root, stats)

    key_summary = _c_call(
        p_key, _lib.clingo_statistics_map_at, stats, key_root, "summary".encode()
    )
    key_call = _c_call(
        p_key, _lib.clingo_statistics_map_at, stats, key_summary, "call".encode()
    )
    call = _c_call("double", _lib.clingo_statistics_value_get, stats, key_call)
    if self._statistics is not None and call != self._statistics_call:
        self._statistics = None

    if self._statistics is None:
        self._statistics_call = call
        self._statistics = _statistics(stats, key_root)

    return cast(dict, self._statistics)

A dict containing solve statistics of the last solve call.

See Also

clingo.statistics

Notes

The statistics correspond to the --stats output of clingo. The detail of the statistics depends on what level is requested on the command line. Furthermore, there are some functions like Control.release_external() that start a new solving step resetting the current step statistics. It is best to access the statistics right after solving.

This property is only available in clingo.

prop symbolic_atomsSymbolicAtoms
Expand source code
@property
def symbolic_atoms(self) -> SymbolicAtoms:
    """
    An object to inspect the symbolic atoms.

    See Also
    --------
    clingo.symbolic_atoms
    """
    return SymbolicAtoms(
        _c_call(
            "clingo_symbolic_atoms_t*",
            _lib.clingo_control_symbolic_atoms,
            self._rep,
        )
    )

An object to inspect the symbolic atoms.

See Also

clingo.symbolic_atoms

prop theory_atoms : Iterator[TheoryAtom]
Expand source code
@property
def theory_atoms(self) -> Iterator[TheoryAtom]:
    """
    An iterator over the theory atoms in a program.

    See Also
    --------
    clingo.theory_atoms
    """
    atoms = _c_call(
        "clingo_theory_atoms_t*", _lib.clingo_control_theory_atoms, self._rep
    )
    size = _c_call("size_t", _lib.clingo_theory_atoms_size, atoms)

    for idx in range(size):
        yield TheoryAtom(atoms, idx)

An iterator over the theory atoms in a program.

See Also

clingo.theory_atoms

Methods

def add(self, *args, **kwargs) ‑> None
Expand source code
def add(self, *args, **kwargs) -> None:
    """
    Extend the logic program with the given non-ground logic program in string form.

    This function provides two overloads:

    ```python
    def add(self, name: str, parameters: Sequence[str], program: str) -> None:
        ...

    def add(self, program: str) -> None:
        return self.add("base", [], program)
    ```

    Parameters
    ----------
    name
        The name of program block to add.
    parameters
        The parameters of the program block to add.
    program
        The non-ground program in string form.

    See Also
    --------
    Control.ground
    """
    n = len(args) + len(kwargs)
    if n == 1:
        self._add1(*args, **kwargs)
    else:
        self._add2(*args, **kwargs)

Extend the logic program with the given non-ground logic program in string form.

This function provides two overloads:

def add(self, name: str, parameters: Sequence[str], program: str) -> None:
    ...

def add(self, program: str) -> None:
    return self.add("base", [], program)

Parameters

name
The name of program block to add.
parameters
The parameters of the program block to add.
program
The non-ground program in string form.

See Also

Control.ground()

def add_project(self,
atoms: Sequence[Symbol | int]) ‑> None
Expand source code
def add_project(self, atoms: Sequence[Union[Symbol, int]]) -> None:
    """
    Add atoms to project on to the program.

    Parameters
    ----------
    atoms
        List of atoms or program literals (see `clingo.symbolic_atoms.SymbolicAtom.literal`) to project on.

    Notes
    -----
    The function extends the set of atoms to project on with the given atoms.

    See Also
    --------
    Control.replace_project
    """
    self._update_project(atoms, append=True)

Add atoms to project on to the program.

Parameters

atoms
List of atoms or program literals (see SymbolicAtom.literal) to project on.

Notes

The function extends the set of atoms to project on with the given atoms.

See Also

Control.replace_project()

def assign_external(self,
external: Symbol | int,
truth: bool | None) ‑> None
Expand source code
def assign_external(
    self, external: Union[Symbol, int], truth: Optional[bool]
) -> None:
    """
    Assign a truth value to an external atom.

    Parameters
    ----------
    external
        A symbol or program literal representing the external atom.
    truth
        A Boolean fixes the external to the respective truth value; and
        None leaves its truth value open.

    See Also
    --------
    Control.release_external, clingo.solving.SolveControl.symbolic_atoms,
    clingo.symbolic_atoms.SymbolicAtom.is_external

    Notes
    -----
    The truth value of an external atom can be changed before each solve
    call. An atom is treated as external if it has been declared using an
    `#external` directive, and has not been released by calling
    `Control.release_external` or defined in a logic program with some
    rule. If the given atom is not external, then the function has no
    effect.

    For convenience, the truth assigned to atoms over negative program
    literals is inverted.
    """

    if truth is None:
        val = _lib.clingo_external_type_free
    elif truth:
        val = _lib.clingo_external_type_true
    else:
        val = _lib.clingo_external_type_false
    _handle_error(
        _lib.clingo_control_assign_external(
            self._rep, self._program_atom(external), val
        )
    )

Assign a truth value to an external atom.

Parameters

external
A symbol or program literal representing the external atom.
truth
A Boolean fixes the external to the respective truth value; and None leaves its truth value open.

See Also

Control.release_external(), SolveControl.symbolic_atoms, SymbolicAtom.is_external

Notes

The truth value of an external atom can be changed before each solve call. An atom is treated as external if it has been declared using an #external directive, and has not been released by calling Control.release_external() or defined in a logic program with some rule. If the given atom is not external, then the function has no effect.

For convenience, the truth assigned to atoms over negative program literals is inverted.

def backend(self) ‑> Backend
Expand source code
def backend(self) -> Backend:
    """
    Returns a `Backend` object providing a low level interface to extend a
    logic program.

    See Also
    --------
    clingo.backend
    """
    return Backend(
        _c_call("clingo_backend_t*", _lib.clingo_control_backend, self._rep),
        self._error,
    )

Returns a Backend object providing a low level interface to extend a logic program.

See Also

clingo.backend

def cleanup(self) ‑> None
Expand source code
def cleanup(self) -> None:
    """
    Cleanup the domain used for grounding by incorporating information from
    the solver.

    This function cleans up the domain used for grounding.  This is done by
    first simplifying the current program representation (falsifying
    released external atoms).  Afterwards, the top-level implications are
    used to either remove atoms from the domain or mark them as facts.

    See Also
    --------
    Control.enable_cleanup

    Notes
    -----
    Any atoms falsified are completely removed from the logic program.
    Hence, a definition for such an atom in a successive step introduces a
    fresh atom.

    With the current implementation, the function only has an effect if
    called after solving and before any function is called that starts a
    new step.

    Typically, it is not necessary to call this function manually because
    automatic cleanups are enabled by default.
    """
    _handle_error(_lib.clingo_control_cleanup(self._rep))

Cleanup the domain used for grounding by incorporating information from the solver.

This function cleans up the domain used for grounding. This is done by first simplifying the current program representation (falsifying released external atoms). Afterwards, the top-level implications are used to either remove atoms from the domain or mark them as facts.

See Also

Control.enable_cleanup

Notes

Any atoms falsified are completely removed from the logic program. Hence, a definition for such an atom in a successive step introduces a fresh atom.

With the current implementation, the function only has an effect if called after solving and before any function is called that starts a new step.

Typically, it is not necessary to call this function manually because automatic cleanups are enabled by default.

def get_const(self, name: str) ‑> Symbol | None
Expand source code
def get_const(self, name: str) -> Optional[Symbol]:
    """
    Return the symbol for a constant definition of form:

        #const name = symbol.

    Parameters
    ----------
    name
        The name of the constant to retrieve.

    Returns
    -------
    The function returns `None` if no matching constant definition exists.
    """
    if not _c_call("bool", _lib.clingo_control_has_const, self._rep, name.encode()):
        return None

    return Symbol(
        _c_call(
            "clingo_symbol_t",
            _lib.clingo_control_get_const,
            self._rep,
            name.encode(),
        )
    )

Return the symbol for a constant definition of form:

#const name = symbol.

Parameters

name
The name of the constant to retrieve.

Returns

The function returns None if no matching constant definition exists.

def ground(self,
parts: Sequence[Tuple[str, Sequence[Symbol]]] = (('base', ()),),
context: Any = None) ‑> None
Expand source code
def ground(
    self,
    parts: Sequence[Tuple[str, Sequence[Symbol]]] = (("base", ()),),
    context: Any = None,
) -> None:
    """
    Ground the given list of program parts specified by tuples of names and
    arguments.

    Parameters
    ----------
    parts
        List of tuples of program names and program arguments to ground.
    context
        A context object whose methods are called during grounding using
        the `@`-syntax (if omitted, those from the main module are used).

    Notes
    -----
    Note that parts of a logic program without an explicit `#program`
    specification are by default put into a program called `base` without
    arguments.
    """
    # pylint: disable=protected-access,dangerous-default-value
    self._error.clear()
    data = _CBData(context, self._error)
    c_data = _ffi.new_handle(data) if context else _ffi.NULL
    c_cb = _lib.pyclingo_ground_callback if context else _ffi.NULL

    c_mem = []
    c_parts = _ffi.new("clingo_part_t[]", len(parts))
    for part, c_part in zip(parts, c_parts):
        c_mem.append(_ffi.new("char[]", part[0].encode()))
        c_part.name = c_mem[-1]
        c_mem.append(_ffi.new("clingo_symbol_t[]", len(part[1])))
        c_part.params = c_mem[-1]
        for i, sym in enumerate(part[1]):
            c_part.params[i] = sym._rep
        c_part.size = len(part[1])

    _handle_error(
        _lib.clingo_control_ground(self._rep, c_parts, len(parts), c_cb, c_data),
        data,
    )

Ground the given list of program parts specified by tuples of names and arguments.

Parameters

parts
List of tuples of program names and program arguments to ground.
context
A context object whose methods are called during grounding using the @-syntax (if omitted, those from the main module are used).

Notes

Note that parts of a logic program without an explicit #program specification are by default put into a program called base without arguments.

def interrupt(self) ‑> None
Expand source code
def interrupt(self) -> None:
    """
    Interrupt the active solve call.

    Notes
    -----
    This function is thread-safe and can be called from a signal handler. If no
    search is active, the subsequent call to `Control.solve` is interrupted. The
    result of the `Control.solve` method can be used to query if the search was
    interrupted.
    """
    _lib.clingo_control_interrupt(self._rep)

Interrupt the active solve call.

Notes

This function is thread-safe and can be called from a signal handler. If no search is active, the subsequent call to Control.solve() is interrupted. The result of the Control.solve() method can be used to query if the search was interrupted.

def load(self, path: str) ‑> None
Expand source code
def load(self, path: str) -> None:
    """
    Extend the logic program with a (non-ground) logic program in a file.

    Parameters
    ----------
    path
        The path of the file to load.
    """
    _handle_error(_lib.clingo_control_load(self._rep, path.encode()))

Extend the logic program with a (non-ground) logic program in a file.

Parameters

path
The path of the file to load.
def load_aspif(self, files: Sequence[str]) ‑> None
Expand source code
def load_aspif(self, files: Sequence[str]) -> None:
    """
    Extend the logic program with a program in aspif format.

    This function should be called on an empty control object. If more than
    one file is given, they are merged into one file. Only the first one
    should have a preamble.

    Parameters
    ----------
    files
        A list of files to load.
    """
    c_mem = []
    c_files = _ffi.new("char*[]", len(files))
    for i, path in enumerate(files):
        c_mem.append(_ffi.new("char[]", path.encode()))
        c_files[i] = c_mem[-1]
    _handle_error(_lib.clingo_control_load_aspif(self._rep, c_files, len(files)))

Extend the logic program with a program in aspif format.

This function should be called on an empty control object. If more than one file is given, they are merged into one file. Only the first one should have a preamble.

Parameters

files
A list of files to load.
def register_backend(self,
type: BackendType,
file: str,
replace: bool = False,
reify_sccs: bool = False,
reify_steps: bool = False) ‑> None
Expand source code
def register_backend(
    self,
    type: BackendType,
    file: str,
    replace: bool = False,
    reify_sccs: bool = False,
    reify_steps: bool = False,
) -> None:
    """
    Registers a backend of the given type.

    This function is similar to register_observer but instead registers a predefined backend.

    Parameters
    ----------
    type
        The type of backend to register.
    file:
        The path of the file to write to.
    replace
        If set to true, the output is just passed to the backend and no longer to
        the underlying solver (or any previously registered backends/observers).
    reify_sccs
        Whether to reify sccs.
    reify_steps
        Whether to reify steps.

    See Also
    --------
    clingo.backend
    """
    bitset = type.value
    if reify_sccs:
        bitset = bitset | _lib.clingo_backend_type_reify_sccs
    if reify_steps:
        bitset = bitset | _lib.clingo_backend_type_reify_steps
    _handle_error(
        _lib.clingo_control_register_backend(
            self._rep, bitset, file.encode(), replace
        )
    )

Registers a backend of the given type.

This function is similar to register_observer but instead registers a predefined backend.

Parameters

type
The type of backend to register.
file:
The path of the file to write to.
replace
If set to true, the output is just passed to the backend and no longer to the underlying solver (or any previously registered backends/observers).
reify_sccs
Whether to reify sccs.
reify_steps
Whether to reify steps.

See Also

clingo.backend

def register_observer(self,
observer: Observer,
replace: bool = False) ‑> None
Expand source code
def register_observer(self, observer: Observer, replace: bool = False) -> None:
    """
    Registers the given observer to inspect the produced grounding.

    Parameters
    ----------
    observer
        The observer to register. See below for a description of the required
        interface.
    replace
        If set to true, the output is just passed to the observer and no longer to
        the underlying solver (or any previously registered observers).

    See Also
    --------
    clingo.backend
    """
    # pylint: disable=protected-access,line-too-long
    c_observer = _ffi.new(
        "clingo_ground_program_observer_t*",
        (
            (
                _lib.pyclingo_observer_init_program
                if _overwritten(Observer, observer, "init_program")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_begin_step
                if _overwritten(Observer, observer, "begin_step")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_end_step
                if _overwritten(Observer, observer, "end_step")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_rule
                if _overwritten(Observer, observer, "rule")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_weight_rule
                if _overwritten(Observer, observer, "weight_rule")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_minimize
                if _overwritten(Observer, observer, "minimize")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_project
                if _overwritten(Observer, observer, "project")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_output_atom
                if _overwritten(Observer, observer, "output_atom")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_output_term
                if _overwritten(Observer, observer, "output_term")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_external
                if _overwritten(Observer, observer, "external")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_assume
                if _overwritten(Observer, observer, "assume")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_heuristic
                if _overwritten(Observer, observer, "heuristic")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_acyc_edge
                if _overwritten(Observer, observer, "acyc_edge")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_theory_term_number
                if _overwritten(Observer, observer, "theory_term_number")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_theory_term_string
                if _overwritten(Observer, observer, "theory_term_string")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_theory_term_compound
                if _overwritten(Observer, observer, "theory_term_compound")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_theory_element
                if _overwritten(Observer, observer, "theory_element")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_theory_atom
                if _overwritten(Observer, observer, "theory_atom")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_observer_theory_atom_with_guard
                if _overwritten(Observer, observer, "theory_atom_with_guard")
                else _ffi.NULL
            ),
        ),
    )
    c_data = _ffi.new_handle(_CBData(observer, self._error))
    self._mem.append(c_data)
    _handle_error(
        _lib.clingo_control_register_observer(
            self._rep, c_observer, replace, c_data
        )
    )

Registers the given observer to inspect the produced grounding.

Parameters

observer
The observer to register. See below for a description of the required interface.
replace
If set to true, the output is just passed to the observer and no longer to the underlying solver (or any previously registered observers).

See Also

clingo.backend

def register_propagator(self,
propagator: Propagator) ‑> None
Expand source code
def register_propagator(self, propagator: Propagator) -> None:
    """
    Registers the given propagator with all solvers.

    Parameters
    ----------
    propagator
        The propagator to register.

    See Also
    --------
    clingo.propagator
    """
    # pylint: disable=protected-access
    c_propagator = _ffi.new(
        "clingo_propagator_t*",
        (
            (
                _lib.pyclingo_propagator_init
                if _overwritten(Propagator, propagator, "init")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_propagator_propagate
                if _overwritten(Propagator, propagator, "propagate")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_propagator_undo
                if _overwritten(Propagator, propagator, "undo")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_propagator_check
                if _overwritten(Propagator, propagator, "check")
                else _ffi.NULL
            ),
            (
                _lib.pyclingo_propagator_decide
                if _overwritten(Propagator, propagator, "decide")
                else _ffi.NULL
            ),
        ),
    )
    c_data = _ffi.new_handle(_CBData(propagator, self._error))
    self._mem.append(c_data)
    _handle_error(
        _lib.clingo_control_register_propagator(
            self._rep, c_propagator, c_data, False
        )
    )

Registers the given propagator with all solvers.

Parameters

propagator
The propagator to register.

See Also

clingo.propagator

def release_external(self,
external: Symbol | int) ‑> None
Expand source code
def release_external(self, external: Union[Symbol, int]) -> None:
    """
    Release an external atom represented by the given symbol or program
    literal.

    This function causes the corresponding atom to become permanently false
    if there is no definition for the atom in the program. Otherwise, the
    function has no effect.

    Parameters
    ----------
    external
        The symbolic atom or program atom to release.

    Notes
    -----
    If the program literal is negative, the corresponding atom is released.

    Examples
    --------
    The following example shows the effect of assigning and releasing and external
    atom.

        >>> from clingo.symbol import Function
        >>> from clingo.control import Control
        >>>
        >>> ctl = Control()
        >>> ctl.add("base", [], "a. #external b.")
        >>> ctl.ground([("base", [])])
        >>> ctl.assign_external(Function("b"), True)
        >>> print(ctl.solve(on_model=print))
        b a
        SAT
        >>> ctl.release_external(Function("b"))
        >>> print(ctl.solve(on_model=print))
        a
        SAT
    """
    _handle_error(
        _lib.clingo_control_release_external(
            self._rep, self._program_atom(external)
        )
    )

Release an external atom represented by the given symbol or program literal.

This function causes the corresponding atom to become permanently false if there is no definition for the atom in the program. Otherwise, the function has no effect.

Parameters

external
The symbolic atom or program atom to release.

Notes

If the program literal is negative, the corresponding atom is released.

Examples

The following example shows the effect of assigning and releasing and external atom.

>>> from clingo.symbol import Function
>>> from clingo.control import Control
>>>
>>> ctl = Control()
>>> ctl.add("base", [], "a. #external b.")
>>> ctl.ground([("base", [])])
>>> ctl.assign_external(Function("b"), True)
>>> print(ctl.solve(on_model=print))
b a
SAT
>>> ctl.release_external(Function("b"))
>>> print(ctl.solve(on_model=print))
a
SAT
def remove_minimize(self) ‑> None
Expand source code
def remove_minimize(self) -> None:
    """
    Remove all minimize constraints from the program.

    This function removes all minimize constraints that were previously added to the program.
    """
    _handle_error(_lib.clingo_control_remove_minimize(self._rep))

Remove all minimize constraints from the program.

This function removes all minimize constraints that were previously added to the program.

def remove_project(self) ‑> None
Expand source code
def remove_project(self) -> None:
    """
    Remove all projection atoms.

    See Also
    --------
    Control.add_project
    """
    self._update_project([], append=False)

Remove all projection atoms.

See Also

Control.add_project()

def replace_project(self,
atoms: Sequence[Symbol | int]) ‑> None
Expand source code
def replace_project(self, atoms: Sequence[Union[Symbol, int]]) -> None:
    """
    Set atoms to project on.

    Parameters
    ----------
    atoms
       List of atoms or program literals (see `clingo.symbolic_atoms.SymbolicAtom.literal`) to project on.

    Notes
    -----
    The function sets the atoms to project on to the given atoms thereby replacing any previously added project
    statements.

    See Also
    --------
    Control.add_project
    """
    self._update_project(atoms, append=False)

Set atoms to project on.

Parameters

atoms
 

List of atoms or program literals (see SymbolicAtom.literal) to project on.

Notes

The function sets the atoms to project on to the given atoms thereby replacing any previously added project statements.

See Also

Control.add_project()

def solve(self,
assumptions: Sequence[Tuple[Symbol, bool] | int] = (),
on_model: Callable[[Model], bool | None] | None = None,
on_unsat: Callable[[Sequence[int]], None] | None = None,
on_statistics: Callable[[StatisticsMapStatisticsMap], None] | None = None,
on_finish: Callable[[SolveResult], None] | None = None,
on_core: Callable[[Sequence[int]], None] | None = None,
on_last: Callable[[Model], None] | None = None,
yield_: bool = False,
async_: bool = False) ‑> SolveHandle | SolveResult
Expand source code
def solve(
    self,
    assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = (),
    on_model: Optional[Callable[[Model], Optional[bool]]] = None,
    on_unsat: Optional[Callable[[Sequence[int]], None]] = None,
    on_statistics: Optional[Callable[[StatisticsMap, StatisticsMap], None]] = None,
    on_finish: Optional[Callable[[SolveResult], None]] = None,
    on_core: Optional[Callable[[Sequence[int]], None]] = None,
    on_last: Optional[Callable[[Model], None]] = None,
    yield_: bool = False,
    async_: bool = False,
) -> Union[SolveHandle, SolveResult]:
    """
    Starts a search.

    Parameters
    ----------
    assumptions
        List of (atom, boolean) tuples or program literals (see
        `clingo.symbolic_atoms.SymbolicAtom.literal`) that serve as
        assumptions for the solve call, e.g., solving under assumptions
        `[(Function("a"), True)]` only admits answer sets that contain atom `a`.
    on_model
        Optional callback for intercepting models.
        A `clingo.solving.Model` object is passed to the callback. The
        search can be interrupted from the model callback by returning
        False.
    on_unsat
        Optional callback to intercept lower bounds during optimization.
    on_statistics
        Optional callback to update statistics.
        The step and accumulated statistics are passed as arguments.
    on_finish
        Optional callback called once search has finished.
        A `clingo.solving.SolveResult` also indicating whether the solve
        call has been interrupted is passed to the callback.
    on_core
        Optional callback called with the assumptions that made a problem
        unsatisfiable.
    on_last
        Optional callback for getting the last model computed for a satisfiable problem.
        A `clingo.solving.Model` object is passed to the callback.
    yield_
        The resulting `clingo.solving.SolveHandle` is iterable yielding
        `clingo.solving.Model` objects.
    async_
        The solve call and the method `clingo.solving.SolveHandle.resume`
        of the returned handle are non-blocking.

    Returns
    -------
    The return value depends on the parameters. If either `yield_` or
    `async_` is true, then a handle is returned. Otherwise, a
    `clingo.solving.SolveResult` is returned.

    See Also
    --------
    clingo.solving

    Notes
    -----
    If neither `yield_` nor `async_` is set, the function returns a
    `clingo.solving.SolveResult` right away.

    In gringo or in clingo with lparse or text output enabled, this
    function just grounds and returns a `clingo.solving.SolveResult` where
    `clingo.solving.SolveResult.unknown` is true.

    If this function is used in embedded Python code, you might want to start
    clingo using the `--outf=3` option to disable all output from clingo.

    Asynchronous solving is only available in clingo with thread support
    enabled. Furthermore, the on_model and on_finish callbacks are called
    from another thread. To ensure that the methods can be called, make
    sure to not use any functions that block Python's GIL indefinitely.

    This function as well as blocking functions on the
    `clingo.solving.SolveHandle` release the GIL but are not thread-safe.
    """
    # pylint: disable=protected-access,dangerous-default-value
    self._error.clear()
    handler = _SolveEventHandler(on_model, on_unsat, on_statistics, on_finish)
    data = _CBData(handler, self._error)
    self._handler = _ffi.new_handle(data)

    p_ass = _ffi.NULL
    if assumptions:
        atoms = None
        p_ass = _ffi.new("clingo_literal_t[]", len(assumptions))
        for i, lit in enumerate(assumptions):
            if isinstance(lit, int):
                p_ass[i] = lit
            else:
                if atoms is None:
                    atoms = self.symbolic_atoms
                atom = self.symbolic_atoms[lit[0]]
                slit = -1 if atom is None else atom.literal
                p_ass[i] = slit if lit[1] else -slit

    mode = 0
    if yield_:
        mode |= _lib.clingo_solve_mode_yield
    if async_:
        mode |= _lib.clingo_solve_mode_async

    handle = SolveHandle(
        _c_call(
            "clingo_solve_handle_t*",
            _lib.clingo_control_solve,
            self._rep,
            mode,
            p_ass,
            len(assumptions),
            _lib.pyclingo_solve_event_callback,
            self._handler,
            handler=data,
        ),
        data,
    )

    if not yield_ and not async_:
        with handle:
            ret = handle.get()
            if on_core is not None and ret.unsatisfiable:
                on_core(handle.core())
            if on_last is not None:
                m = handle.last()
                if m is not None:
                    on_last(m)
            return ret
    return handle

Starts a search.

Parameters

assumptions
List of (atom, boolean) tuples or program literals (see SymbolicAtom.literal) that serve as assumptions for the solve call, e.g., solving under assumptions [(Function("a"), True)] only admits answer sets that contain atom a.
on_model
Optional callback for intercepting models. A Model object is passed to the callback. The search can be interrupted from the model callback by returning False.
on_unsat
Optional callback to intercept lower bounds during optimization.
on_statistics
Optional callback to update statistics. The step and accumulated statistics are passed as arguments.
on_finish
Optional callback called once search has finished. A SolveResult also indicating whether the solve call has been interrupted is passed to the callback.
on_core
Optional callback called with the assumptions that made a problem unsatisfiable.
on_last
Optional callback for getting the last model computed for a satisfiable problem. A Model object is passed to the callback.
yield_
The resulting SolveHandle is iterable yielding Model objects.
async_
The solve call and the method SolveHandle.resume() of the returned handle are non-blocking.

Returns

The return value depends on the parameters. If either yield_ or async_ is true, then a handle is returned. Otherwise, a SolveResult is returned.

See Also

clingo.solving

Notes

If neither yield_ nor async_ is set, the function returns a SolveResult right away.

In gringo or in clingo with lparse or text output enabled, this function just grounds and returns a SolveResult where SolveResult.unknown is true.

If this function is used in embedded Python code, you might want to start clingo using the --outf=3 option to disable all output from clingo.

Asynchronous solving is only available in clingo with thread support enabled. Furthermore, the on_model and on_finish callbacks are called from another thread. To ensure that the methods can be called, make sure to not use any functions that block Python's GIL indefinitely.

This function as well as blocking functions on the SolveHandle release the GIL but are not thread-safe.