Module clingox.reify
This module provides functions to reify programs.
This includes a Reifier
implementing clingo's Observer
interface that can be registered with a Control
object.
Additionally, the module provides a ReifiedTheory
class that provides a
similar interface as clingo's theory atoms but uses the reified symbols.
Examples
The following example uses the reify_program()
function to reify a program:
>>> from clingox.reify import reify_program
>>> prg = 'b :- a. {a}.'
>>> symbols = reify_program(prg)
>>> print([str(sym) for sym in symbols])
['tag(incremental)', 'atom_tuple(0)', 'atom_tuple(0,1)', 'literal_tuple(0)',
'rule(choice(0),normal(0))', 'atom_tuple(1)', 'atom_tuple(1,2)',
'literal_tuple(1)', 'literal_tuple(1,1)', 'rule(disjunction(1),normal(1))',
'output(a,1)', 'literal_tuple(2)', 'literal_tuple(2,2)', 'output(b,2)']
The last example shows how to use the ReifiedTheory
class.
>>> from clingox.reify import ReifiedTheory, reify_program
>>> prg = '#theory theory { t { }; &p/0 : t, any }. &p { t }.'
>>> thy = ReifiedTheory(reify_program(prg))
>>> print([str(atm) for atm in thy])
['&p { t: literal_tuple(0) }']
>>> from clingox.theory import evaluate
>>> evaluate(next(iter(thy)).term)
Function('p', [], True)
Functions
def reify_program(prg: str, calculate_sccs: bool = False, reify_steps: bool = False) ‑> List[Symbol]
-
Expand source code
def reify_program( prg: str, calculate_sccs: bool = False, reify_steps: bool = False ) -> List[Symbol]: """ Reify the given program and return the reified symbols. Parameters ---------- prg The program to reify in form of a string. calculate_sccs Whether to calculate SCCs of the reified program. reify_steps Whether to add a step number to the reified facts. Returns ------- A list of symbols containing the reified facts. """ ret: List[Symbol] = [] ctl = Control() reifier = Reifier(ret.append, calculate_sccs, reify_steps) ctl.register_observer(reifier) ctl.add("base", [], prg) ctl.ground([("base", [])]) if calculate_sccs and not reify_steps: reifier.calculate_sccs() return ret
Reify the given program and return the reified symbols.
Parameters
prg
- The program to reify in form of a string.
calculate_sccs
- Whether to calculate SCCs of the reified program.
reify_steps
- Whether to add a step number to the reified facts.
Returns
A list of symbols containing the reified facts.
Classes
class ReifiedTheory (symbols: Sequence[Symbol])
-
Expand source code
class ReifiedTheory: """ Class indexing the symbols related to a theory. The `ReifiedTheoryTerm`, `ReifiedTheoryElement`, and `ReifiedTheoryElement` classes provide views on this data that behave as the corresponding classes in clingo's `clingo.theory_atoms` module. """ terms: List[Symbol] elements: List[Symbol] atoms: List[Symbol] term_tuples: List[List[int]] element_tuples: List[List[int]] def __init__(self, symbols: Sequence[Symbol]): self.terms = [] self.elements = [] self.atoms = [] self.term_tuples = [] self.element_tuples = [] for sym in symbols: _ = ( _set((("theory_atom", 3), ("theory_atom", 5)), self.atoms, sym, True) or _set((("theory_element", 3),), self.elements, sym) or _set( ( ("theory_sequence", 3), ("theory_string", 2), ("theory_number", 2), ("theory_function", 3), ), self.terms, sym, ) or _ensure("theory_tuple", self.term_tuples, sym, True) or _ensure("theory_element_tuple", self.element_tuples, sym) ) def __iter__(self) -> Iterator["ReifiedTheoryAtom"]: for idx in range(len(self.atoms)): yield ReifiedTheoryAtom(idx, self)
Class indexing the symbols related to a theory.
The
ReifiedTheoryTerm
,ReifiedTheoryElement
, andReifiedTheoryElement
classes provide views on this data that behave as the corresponding classes in clingo'sclingo.theory_atoms
module.Class variables
var atoms : List[Symbol]
var element_tuples : List[List[int]]
var elements : List[Symbol]
var term_tuples : List[List[int]]
var terms : List[Symbol]
class ReifiedTheoryAtom (idx: int,
theory: ReifiedTheory)-
Expand source code
class ReifiedTheoryAtom: """ Class to represent theory atoms. Theory atoms have a readable string representation, implement Python's rich comparison operators, and can be used as dictionary keys. """ _idx: int _theory: ReifiedTheory def __init__(self, idx: int, theory: ReifiedTheory): self._idx = idx self._theory = theory assert self.index < len(theory.atoms) @property def index(self) -> int: """ The index of the corresponding reified fact. """ return self._idx @property def _args(self) -> Sequence[Symbol]: return self._theory.atoms[self._idx].arguments @property def elements(self) -> List[ReifiedTheoryElement]: """ The elements of the atom. """ tuple_id = self._args[2].number return [ ReifiedTheoryElement(elem_id, self._theory) for elem_id in self._theory.element_tuples[tuple_id] ] @property def guard(self) -> Optional[Tuple[str, ReifiedTheoryTerm]]: """ The guard of the atom or None if the atom has no guard. """ args = self._args if len(args) <= 3: return None op = self._theory.terms[args[3].number].arguments[1].string return (op, ReifiedTheoryTerm(args[4].number, self._theory)) @property def literal(self) -> int: """ The reified literal associated with the atom. """ return self._args[0].number @property def term(self) -> ReifiedTheoryTerm: """ The term of the atom. """ return ReifiedTheoryTerm(self._args[1].number, self._theory) def __hash__(self): return self._idx def __eq__(self, other): return self._idx == other._idx def __lt__(self, other): return self._idx < other._idx def __str__(self): name = f"&{self.term}" elems = self.elements if elems: estr = f' {{ {"; ".join(str(elem) for elem in elems)} }}' else: estr = "" guard = self.guard if guard: gstr = f" {guard[0]} {guard[1]}" else: gstr = "" return f"{name}{estr}{gstr}"
Class to represent theory atoms.
Theory atoms have a readable string representation, implement Python's rich comparison operators, and can be used as dictionary keys.
Instance variables
prop elements : List[ReifiedTheoryElement]
-
Expand source code
@property def elements(self) -> List[ReifiedTheoryElement]: """ The elements of the atom. """ tuple_id = self._args[2].number return [ ReifiedTheoryElement(elem_id, self._theory) for elem_id in self._theory.element_tuples[tuple_id] ]
The elements of the atom.
prop guard : Tuple[str, ReifiedTheoryTerm] | None
-
Expand source code
@property def guard(self) -> Optional[Tuple[str, ReifiedTheoryTerm]]: """ The guard of the atom or None if the atom has no guard. """ args = self._args if len(args) <= 3: return None op = self._theory.terms[args[3].number].arguments[1].string return (op, ReifiedTheoryTerm(args[4].number, self._theory))
The guard of the atom or None if the atom has no guard.
prop index : int
-
Expand source code
@property def index(self) -> int: """ The index of the corresponding reified fact. """ return self._idx
The index of the corresponding reified fact.
prop literal : int
-
Expand source code
@property def literal(self) -> int: """ The reified literal associated with the atom. """ return self._args[0].number
The reified literal associated with the atom.
prop term : ReifiedTheoryTerm
-
Expand source code
@property def term(self) -> ReifiedTheoryTerm: """ The term of the atom. """ return ReifiedTheoryTerm(self._args[1].number, self._theory)
The term of the atom.
class ReifiedTheoryElement (idx: int,
theory: ReifiedTheory)-
Expand source code
class ReifiedTheoryElement: """ Class to represent theory elements. ReifiedTheory elements have a readable string representation, implement Python's rich comparison operators, and can be used as dictionary keys. """ _idx: int _theory: ReifiedTheory def __init__(self, idx: int, theory: ReifiedTheory): self._idx = idx self._theory = theory assert self.index < len(theory.elements) @property def index(self) -> int: """ The index of the corresponding reified fact. """ return self._idx @property def _args(self) -> Sequence[Symbol]: return self._theory.elements[self._idx].arguments @property def condition_id(self) -> int: """ The id of the literal tuple of the condition. """ return self._args[2].number @property def terms(self) -> List[ReifiedTheoryTerm]: """ The tuple of the element. """ term_ids = self._theory.term_tuples[self._args[1].number] return [ReifiedTheoryTerm(term_id, self._theory) for term_id in term_ids] def __hash__(self): return self._idx def __eq__(self, other): return self._idx == other._idx def __lt__(self, other): return self._idx < other._idx def __str__(self): return f'{",".join(str(term) for term in self.terms)}: literal_tuple({self.condition_id})'
Class to represent theory elements.
ReifiedTheory elements have a readable string representation, implement Python's rich comparison operators, and can be used as dictionary keys.
Instance variables
prop condition_id : int
-
Expand source code
@property def condition_id(self) -> int: """ The id of the literal tuple of the condition. """ return self._args[2].number
The id of the literal tuple of the condition.
prop index : int
-
Expand source code
@property def index(self) -> int: """ The index of the corresponding reified fact. """ return self._idx
The index of the corresponding reified fact.
prop terms : List[ReifiedTheoryTerm]
-
Expand source code
@property def terms(self) -> List[ReifiedTheoryTerm]: """ The tuple of the element. """ term_ids = self._theory.term_tuples[self._args[1].number] return [ReifiedTheoryTerm(term_id, self._theory) for term_id in term_ids]
The tuple of the element.
class ReifiedTheoryTerm (idx: int,
theory: ReifiedTheory)-
Expand source code
class ReifiedTheoryTerm: """ Class to represent theory terms. ReifiedTheory terms have a readable string representation, implement Python's rich comparison operators, and can be used as dictionary keys. """ _idx: int _theory: ReifiedTheory def __init__(self, idx: int, theory: ReifiedTheory): self._idx = idx self._theory = theory assert self.index < len(theory.terms) @property def index(self) -> int: """ The index of the corresponding reified fact. """ return self._idx @property def _args(self) -> Sequence[Symbol]: return self._theory.terms[self._idx].arguments @property def arguments(self) -> List["ReifiedTheoryTerm"]: """ The arguments of the term (for functions, tuples, list, and sets). """ assert self.type in ( TheoryTermType.List, TheoryTermType.Set, TheoryTermType.Tuple, TheoryTermType.Function, ) term_ids = self._theory.term_tuples[self._args[2].number] return [ReifiedTheoryTerm(term_id, self._theory) for term_id in term_ids] @property def name(self) -> str: """ The name of the term (for symbols and functions). """ assert self.type in (TheoryTermType.Symbol, TheoryTermType.Function) if self.type == TheoryTermType.Function: return self._theory.terms[self._args[1].number].arguments[1].string return self._args[1].string @property def number(self) -> int: """ The numeric representation of the term (for numbers). """ assert self.type == TheoryTermType.Number return self._args[1].number @property def type(self) -> TheoryTermType: """ The type of the theory term. """ name = self._theory.terms[self._idx].name if name == "theory_number": return TheoryTermType.Number if name == "theory_string": return TheoryTermType.Symbol if name == "theory_function": return TheoryTermType.Function assert name == "theory_sequence" type_ = self._args[1].name if type_ == "tuple": return TheoryTermType.Tuple if type_ == "set": return TheoryTermType.Set assert type_ == "list" return TheoryTermType.List def __hash__(self): return self._idx def __eq__(self, other): return self._idx == other._idx def __lt__(self, other): return self._idx < other._idx def __str__(self): type_ = self.type if type_ == TheoryTermType.Number: return f"{self.number}" if type_ == TheoryTermType.Symbol: return f"{self.name}" if type_ == TheoryTermType.Function: args = self.arguments name = self.name if len(args) == 1 and is_operator(name): return f"{name}({args[0]})" if len(args) == 2 and is_operator(name): return f"({args[0]}){name}({args[1]})" return f'{name}({",".join(str(arg) for arg in args)})' if type_ == TheoryTermType.Tuple: lhs, rhs = "(", ")" elif type_ == TheoryTermType.List: lhs, rhs = "[", "]" else: lhs, rhs = "{", "}" return f'{lhs}{",".join(str(arg) for arg in self.arguments)}{rhs}'
Class to represent theory terms.
ReifiedTheory terms have a readable string representation, implement Python's rich comparison operators, and can be used as dictionary keys.
Instance variables
prop arguments : List[ReifiedTheoryTerm]
-
Expand source code
@property def arguments(self) -> List["ReifiedTheoryTerm"]: """ The arguments of the term (for functions, tuples, list, and sets). """ assert self.type in ( TheoryTermType.List, TheoryTermType.Set, TheoryTermType.Tuple, TheoryTermType.Function, ) term_ids = self._theory.term_tuples[self._args[2].number] return [ReifiedTheoryTerm(term_id, self._theory) for term_id in term_ids]
The arguments of the term (for functions, tuples, list, and sets).
prop index : int
-
Expand source code
@property def index(self) -> int: """ The index of the corresponding reified fact. """ return self._idx
The index of the corresponding reified fact.
prop name : str
-
Expand source code
@property def name(self) -> str: """ The name of the term (for symbols and functions). """ assert self.type in (TheoryTermType.Symbol, TheoryTermType.Function) if self.type == TheoryTermType.Function: return self._theory.terms[self._args[1].number].arguments[1].string return self._args[1].string
The name of the term (for symbols and functions).
prop number : int
-
Expand source code
@property def number(self) -> int: """ The numeric representation of the term (for numbers). """ assert self.type == TheoryTermType.Number return self._args[1].number
The numeric representation of the term (for numbers).
prop type : TheoryTermType
-
Expand source code
@property def type(self) -> TheoryTermType: """ The type of the theory term. """ name = self._theory.terms[self._idx].name if name == "theory_number": return TheoryTermType.Number if name == "theory_string": return TheoryTermType.Symbol if name == "theory_function": return TheoryTermType.Function assert name == "theory_sequence" type_ = self._args[1].name if type_ == "tuple": return TheoryTermType.Tuple if type_ == "set": return TheoryTermType.Set assert type_ == "list" return TheoryTermType.List
The type of the theory term.
class Reifier (cb: Callable[[Symbol], None],
calculate_sccs: bool = False,
reify_steps: bool = False)-
Expand source code
class Reifier(Observer): """ An observer that will gather the symbols of the reification, in the same way as `clingo --output=reify`. Parameters ---------- cb A callback function that will be called with each symbol of the reification calculate_sccs Flag to calculate the SCCs reify_steps Flag to add a number as the last argument of all reification symbols for the corresponding step """ # pylint:disable=too-many-public-methods _step: int # Bug in mypy??? # _cb: Callable[[Symbol], None] _calculate_sccs: bool _reify_steps: bool _step_data: _StepData def __init__( self, cb: Callable[[Symbol], None], calculate_sccs: bool = False, reify_steps: bool = False, ): self._step = 0 self._cb = cb self._calculate_sccs = calculate_sccs self._reify_steps = reify_steps self._step_data = _StepData() def calculate_sccs(self) -> None: """ Trigger computation of SCCs. SCCs can only be computed if the Reifier has been initialized with `calculate_sccs=True`, This function is called automatically if `reify_steps=True` has been set when initializing the Reifier. """ for idx, scc in enumerate(self._step_data.graph.tarjan()): for atm in scc: self._output("scc", [Number(idx), Number(atm)]) def _add_edges(self, head: Sequence[int], body: Sequence[int]): if self._calculate_sccs: for u in head: for v in body: if v > 0: self._step_data.graph.add_edge(u, v) def _output(self, name: str, args: Sequence[Symbol]): if self._reify_steps: args = list(args) + [Number(self._step)] self._cb(Function(name, args)) def _tuple( self, name: str, snmap: Dict[Sequence[U], int], elems: Sequence[U], afun: Callable[[Symbol, int, U], Sequence[Symbol]], ordered: bool = False, ) -> Symbol: pruned: Sequence[U] if ordered: pruned = elems ident = tuple(elems) else: seen: Set[U] = set() pruned = [] for elem in elems: if elem not in seen: seen.add(elem) pruned.append(elem) ident = tuple(sorted(pruned)) n = len(snmap) i = Number(snmap.setdefault(ident, n)) if n == i.number: self._output(name, [i]) for idx, atm in enumerate(pruned): self._output(name, afun(i, idx, atm)) return i def _atom_tuple(self, atoms: Sequence[int]): return self._tuple("atom_tuple", self._step_data.atom_tuples, atoms, _lit) def _lit_tuple(self, lits: Sequence[int]): return self._tuple("literal_tuple", self._step_data.lit_tuples, lits, _lit) def _wlit_tuple(self, wlits: Sequence[Tuple[int, int]]): return self._tuple( "weighted_literal_tuple", self._step_data.wlit_tuples, wlits, _wlit ) def init_program(self, incremental: bool) -> None: if incremental: self._cb(Function("tag", [Function("incremental")])) def begin_step(self) -> None: pass def rule(self, choice: bool, head: Sequence[int], body: Sequence[int]) -> None: hn = "choice" if choice else "disjunction" hd = Function(hn, [self._atom_tuple(head)]) bd = Function("normal", [self._lit_tuple(body)]) self._output("rule", [hd, bd]) self._add_edges(head, body) def weight_rule( self, choice: bool, head: Sequence[int], lower_bound: int, body: Sequence[Tuple[int, int]], ) -> None: hn = "choice" if choice else "disjunction" hd = Function(hn, [self._atom_tuple(head)]) bd = Function("sum", [self._wlit_tuple(body), Number(lower_bound)]) self._output("rule", [hd, bd]) self._add_edges(head, [lit for lit, w in body]) def minimize(self, priority: int, literals: Sequence[Tuple[int, int]]) -> None: self._output("minimize", [Number(priority), self._wlit_tuple(literals)]) def project(self, atoms: Sequence[int]) -> None: for atom in atoms: self._output("project", [Number(atom)]) def output_atom(self, symbol: Symbol, atom: int) -> None: self._output("output", [symbol, self._lit_tuple([] if atom == 0 else [atom])]) def output_term(self, symbol: Symbol, condition: Sequence[int]) -> None: self._output("output", [symbol, self._lit_tuple(condition)]) def external(self, atom: int, value: TruthValue) -> None: value_name = str(value).replace("TruthValue.", "").lower().rstrip("_") self._output("external", [Number(atom), Function(value_name)]) def assume(self, literals: Sequence[int]) -> None: for lit in literals: self._output("assume", [Number(lit)]) def heuristic( self, atom: int, type_: HeuristicType, bias: int, priority: int, condition: Sequence[int], ) -> None: type_name = str(type_).replace("HeuristicType.", "").lower().rstrip("_") condition_lit = self._lit_tuple(condition) self._output( "heuristic", [ Number(atom), Function(type_name), Number(bias), Number(priority), condition_lit, ], ) def acyc_edge(self, node_u: int, node_v: int, condition: Sequence[int]) -> None: self._output( "edge", [Number(node_u), Number(node_v), self._lit_tuple(condition)] ) def theory_term_number(self, term_id: int, number: int) -> None: self._output("theory_number", [Number(term_id), Number(number)]) def theory_term_string(self, term_id: int, name: str) -> None: self._output("theory_string", [Number(term_id), String(name)]) def theory_term_compound( self, term_id: int, name_id_or_type: int, arguments: Sequence[int] ) -> None: names = {-1: "tuple", -2: "set", -3: "list"} if name_id_or_type in names: name = "theory_sequence" value = Function(names[name_id_or_type]) else: name = "theory_function" value = Number(name_id_or_type) tuple_id = self._tuple( "theory_tuple", self._step_data.theory_tuples, arguments, _theory, True ) self._output(name, [Number(term_id), value, tuple_id]) def theory_element( self, element_id: int, terms: Sequence[int], condition: Sequence[int] ) -> None: tuple_id = self._tuple( "theory_tuple", self._step_data.theory_tuples, terms, _theory, True ) condition_id = self._tuple( "literal_tuple", self._step_data.lit_tuples, condition, _lit ) self._output("theory_element", [Number(element_id), tuple_id, condition_id]) def theory_atom( self, atom_id_or_zero: int, term_id: int, elements: Sequence[int] ) -> None: tuple_e_id = self._tuple( "theory_element_tuple", self._step_data.theory_element_tuples, elements, _lit, ) self._output( "theory_atom", [Number(atom_id_or_zero), Number(term_id), tuple_e_id] ) def theory_atom_with_guard( self, atom_id_or_zero: int, term_id: int, elements: Sequence[int], operator_id: int, right_hand_side_id: int, ) -> None: tuple_id = self._tuple( "theory_element_tuple", self._step_data.theory_element_tuples, elements, _lit, ) self._output( "theory_atom", [ Number(atom_id_or_zero), Number(term_id), tuple_id, Number(operator_id), Number(right_hand_side_id), ], ) def end_step(self) -> None: if self._reify_steps: self.calculate_sccs() self._step += 1 self._step_data = _StepData()
An observer that will gather the symbols of the reification, in the same way as
clingo --output=reify
.Parameters
cb
- A callback function that will be called with each symbol of the reification
calculate_sccs
- Flag to calculate the SCCs
reify_steps
- Flag to add a number as the last argument of all reification symbols for the corresponding step
Ancestors
Methods
def calculate_sccs(self) ‑> None
-
Expand source code
def calculate_sccs(self) -> None: """ Trigger computation of SCCs. SCCs can only be computed if the Reifier has been initialized with `calculate_sccs=True`, This function is called automatically if `reify_steps=True` has been set when initializing the Reifier. """ for idx, scc in enumerate(self._step_data.graph.tarjan()): for atm in scc: self._output("scc", [Number(idx), Number(atm)])
Trigger computation of SCCs.
SCCs can only be computed if the Reifier has been initialized with
calculate_sccs=True
, This function is called automatically ifreify_steps=True
has been set when initializing the Reifier.
Inherited members