Module clingo.control
This module contains the Control
class responsible for
controling grounding and solving.
Examples
The following example shows basic (multishot) grounding and solving.
>>> from clingo.symbol import Number
>>> from clingo.control import Control
>>>
>>> ctl = Control()
>>> ctl.add("base", [], "q.")
>>> ctl.add("p", ["t"], "q(t).")
>>>
>>> ctl.ground([("base", [])])
>>> print(ctl.solve(on_model=print))
q
SAT
>>> ctl.ground([("p", [Number(1)]), ("p", [Number(2)])])
>>> print(ctl.solve(on_model=print))
q q(1) q(2)
SAT
>>> ctl.ground([("p", [Number(3)])])
>>> print(ctl.solve(on_model=print))
q q(1) q(2) q(3)
SAT
Expand source code
'''
This module contains the `clingo.control.Control` class responsible for
controling grounding and solving.
Examples
--------
The following example shows basic (multishot) grounding and solving.
>>> from clingo.symbol import Number
>>> from clingo.control import Control
>>>
>>> ctl = Control()
>>> ctl.add("base", [], "q.")
>>> ctl.add("p", ["t"], "q(t).")
>>>
>>> ctl.ground([("base", [])])
>>> print(ctl.solve(on_model=print))
q
SAT
>>> ctl.ground([("p", [Number(1)]), ("p", [Number(2)])])
>>> print(ctl.solve(on_model=print))
q q(1) q(2)
SAT
>>> ctl.ground([("p", [Number(3)])])
>>> print(ctl.solve(on_model=print))
q q(1) q(2) q(3)
SAT
'''
from typing import Any, Callable, Iterator, Optional, Sequence, Tuple, Union, cast
from collections import abc
import sys
from ._internal import _CBData, _Error, _cb_error_handler, _c_call, _ffi, _handle_error, _lib, _overwritten
from .core import Logger
from .symbol import Symbol
from .symbolic_atoms import SymbolicAtoms
from .theory_atoms import TheoryAtom
from .solving import Model, SolveHandle, SolveResult
from .propagator import Propagator
from .backend import Backend, Observer
from .configuration import Configuration
from .statistics import StatisticsMap, _mutable_statistics, _statistics
__all__ = [ 'Control' ]
class _SolveEventHandler:
# pylint: disable=missing-function-docstring
def __init__(self, on_model, on_unsat, on_statistics, on_finish):
self._on_model = on_model
self._on_unsat = on_unsat
self._on_statistics = on_statistics
self._on_finish = on_finish
def on_model(self, m):
ret = None
if self._on_model is not None:
ret = self._on_model(Model(m))
return bool(ret or ret is None)
def on_unsat(self, lower):
if self._on_unsat is not None:
self._on_unsat(lower)
def on_finish(self, res):
if self._on_finish is not None:
self._on_finish(SolveResult(res))
def on_statistics(self, step, accu):
if self._on_statistics is not None:
self._on_statistics(_mutable_statistics(step), _mutable_statistics(accu))
@_ffi.def_extern(onerror=_cb_error_handler('data'), name='pyclingo_solve_event_callback')
def _pyclingo_solve_event_callback(type_, event, data, goon):
'''
Low-level solve event handler.
'''
handler = _ffi.from_handle(data).data
if type_ == _lib.clingo_solve_event_type_finish:
handler.on_finish(_ffi.cast('clingo_solve_result_bitset_t*', event)[0])
if type_ == _lib.clingo_solve_event_type_model:
goon[0] = handler.on_model(_ffi.cast('clingo_model_t*', event))
if type_ == _lib.clingo_solve_event_type_unsat:
c_args = _ffi.cast('void**', event)
c_lower = _ffi.cast('int64_t*', c_args[0])
size = int(_ffi.cast('size_t', c_args[1]))
handler.on_unsat([c_lower[i] for i in range(size)])
if type_ == _lib.clingo_solve_event_type_statistics:
p_stats = _ffi.cast('clingo_statistics_t**', event)
handler.on_statistics(p_stats[0], p_stats[1])
return True
@_ffi.def_extern(onerror=_cb_error_handler('data'), name='pyclingo_ground_callback')
def _pyclingo_ground_callback(location, name, arguments, arguments_size, data, symbol_callback, symbol_callback_data):
'''
Low-level ground callback.
'''
# Note: location could be attached to error message
# pylint: disable=protected-access,unused-argument
context = _ffi.from_handle(data).data
py_name = _ffi.string(name).decode()
fun = getattr(sys.modules['__main__'] if context is None else context, py_name)
args = []
for i in range(arguments_size):
args.append(Symbol(arguments[i]))
ret = fun(*args)
symbols = list(ret) if isinstance(ret, abc.Iterable) else [ret]
c_symbols = _ffi.new('clingo_symbol_t[]', len(symbols))
for i, sym in enumerate(symbols):
c_symbols[i] = sym._rep
_handle_error(symbol_callback(c_symbols, len(symbols), symbol_callback_data))
return True
class Control:
'''
Control object for the grounding/solving process.
Parameters
----------
arguments
Arguments to the grounder and solver.
logger
Function to intercept messages normally printed to standard error.
message_limit
The maximum number of messages passed to the logger.
Notes
-----
Note that only gringo options (without `--text`) and clasp's search options
are supported. Furthermore, you must not call any functions of a `Control`
object while a solve call is active.
'''
def __init__(self, arguments: Sequence[str]=[],
logger: Optional[Logger]=None, message_limit: int=20):
# pylint: disable=protected-access,dangerous-default-value
self._free = False
self._mem = []
if isinstance(arguments, abc.Sequence):
if logger is not None:
c_handle = _ffi.new_handle(logger)
c_cb = _lib.pyclingo_logger_callback
self._mem.append(c_handle)
else:
c_handle = _ffi.NULL
c_cb = _ffi.NULL
c_mem = []
c_args = _ffi.new('char*[]', len(arguments))
for i, arg in enumerate(arguments):
c_mem.append(_ffi.new("char[]", arg.encode()))
c_args[i] = c_mem[-1]
self._rep = _c_call('clingo_control_t *', _lib.clingo_control_new,
c_args, len(arguments), c_cb, c_handle, message_limit)
self._free = True
else:
self._rep = arguments
self._handler = None
self._statistics = None
self._statistics_call = -1.0
self._error = _Error()
def __del__(self):
if self._free:
_lib.clingo_control_free(self._rep)
def add(self, name: str, parameters: Sequence[str], program: str) -> None:
'''
Extend the logic program with the given non-ground logic program in string form.
Parameters
----------
name
The name of program block to add.
parameters
The parameters of the program block to add.
program
The non-ground program in string form.
See Also
--------
Control.ground
'''
c_mem = []
c_params = _ffi.new('char*[]', len(parameters))
for i, param in enumerate(parameters):
c_mem.append(_ffi.new("char[]", param.encode()))
c_params[i] = c_mem[-1]
_handle_error(_lib.clingo_control_add(self._rep, name.encode(), c_params, len(parameters), program.encode()))
def _program_atom(self, lit: Union[Symbol,int]) -> int:
if isinstance(lit, int):
return lit
satom = self.symbolic_atoms[lit]
return 0 if satom is None else satom.literal
def assign_external(self, external: Union[Symbol,int], truth: Optional[bool]) -> None:
'''
Assign a truth value to an external atom.
Parameters
----------
external
A symbol or program literal representing the external atom.
truth
A Boolean fixes the external to the respective truth value; and
None leaves its truth value open.
See Also
--------
Control.release_external, clingo.solving.SolveControl.symbolic_atoms,
clingo.symbolic_atoms.SymbolicAtom.is_external
Notes
-----
The truth value of an external atom can be changed before each solve
call. An atom is treated as external if it has been declared using an
`#external` directive, and has not been released by calling
`Control.release_external` or defined in a logic program with some
rule. If the given atom is not external, then the function has no
effect.
For convenience, the truth assigned to atoms over negative program
literals is inverted.
'''
if truth is None:
val = _lib.clingo_external_type_free
elif truth:
val = _lib.clingo_external_type_true
else:
val = _lib.clingo_external_type_false
_handle_error(_lib.clingo_control_assign_external(self._rep, self._program_atom(external), val))
def backend(self) -> Backend:
'''
Returns a `Backend` object providing a low level interface to extend a
logic program.
See Also
--------
clingo.backend
'''
return Backend(_c_call('clingo_backend_t*', _lib.clingo_control_backend, self._rep), self._error)
def cleanup(self) -> None:
'''
Cleanup the domain used for grounding by incorporating information from
the solver.
This function cleans up the domain used for grounding. This is done by
first simplifying the current program representation (falsifying
released external atoms). Afterwards, the top-level implications are
used to either remove atoms from the domain or mark them as facts.
See Also
--------
Control.enable_cleanup
Notes
-----
Any atoms falsified are completely removed from the logic program.
Hence, a definition for such an atom in a successive step introduces a
fresh atom.
With the current implementation, the function only has an effect if
called after solving and before any function is called that starts a
new step.
Typically, it is not necessary to call this function manually because
automatic cleanups are enabled by default.
'''
_handle_error(_lib.clingo_control_cleanup(self._rep))
def get_const(self, name: str) -> Optional[Symbol]:
'''
Return the symbol for a constant definition of form:
#const name = symbol.
Parameters
----------
name
The name of the constant to retrieve.
Returns
-------
The function returns `None` if no matching constant definition exists.
'''
if not _c_call('bool', _lib.clingo_control_has_const, self._rep, name.encode()):
return None
return Symbol(_c_call('clingo_symbol_t', _lib.clingo_control_get_const, self._rep, name.encode()))
def ground(self, parts: Sequence[Tuple[str,Sequence[Symbol]]], context: Any=None) -> None:
'''
Ground the given list of program parts specified by tuples of names and
arguments.
Parameters
----------
parts
List of tuples of program names and program arguments to ground.
context
A context object whose methods are called during grounding using
the `@`-syntax (if omitted, those from the main module are used).
Notes
-----
Note that parts of a logic program without an explicit `#program`
specification are by default put into a program called `base` without
arguments.
'''
# pylint: disable=protected-access,dangerous-default-value
self._error.clear()
data = _CBData(context, self._error)
c_data = _ffi.new_handle(data) if context else _ffi.NULL
c_cb = _lib.pyclingo_ground_callback if context else _ffi.NULL
c_mem = []
c_parts = _ffi.new("clingo_part_t[]", len(parts))
for part, c_part in zip(parts, c_parts):
c_mem.append(_ffi.new("char[]", part[0].encode()))
c_part.name = c_mem[-1]
c_mem.append(_ffi.new("clingo_symbol_t[]", len(part[1])))
c_part.params = c_mem[-1]
for i, sym in enumerate(part[1]):
c_part.params[i] = sym._rep
c_part.size = len(part[1])
_handle_error(_lib.clingo_control_ground(
self._rep, c_parts, len(parts), c_cb, c_data), data)
def interrupt(self) -> None:
'''
Interrupt the active solve call.
Notes
-----
This function is thread-safe and can be called from a signal handler. If no
search is active, the subsequent call to `Control.solve` is interrupted. The
result of the `Control.solve` method can be used to query if the search was
interrupted.
'''
_lib.clingo_control_interrupt(self._rep)
def load(self, path: str) -> None:
'''
Extend the logic program with a (non-ground) logic program in a file.
Parameters
----------
path
The path of the file to load.
'''
_handle_error(_lib.clingo_control_load(self._rep, path.encode()))
def register_observer(self, observer: Observer, replace: bool=False) -> None:
'''
Registers the given observer to inspect the produced grounding.
Parameters
----------
observer
The observer to register. See below for a description of the requirede
interface.
replace
If set to true, the output is just passed to the observer and nolonger to
the underlying solver (or any previously registered observers).
See Also
--------
clingo.backend
'''
# pylint: disable=protected-access,line-too-long
c_observer = _ffi.new('clingo_ground_program_observer_t*', (
_lib.pyclingo_observer_init_program if _overwritten(Observer, observer, "init_program") else _ffi.NULL,
_lib.pyclingo_observer_begin_step if _overwritten(Observer, observer, "begin_step") else _ffi.NULL,
_lib.pyclingo_observer_end_step if _overwritten(Observer, observer, "end_step") else _ffi.NULL,
_lib.pyclingo_observer_rule if _overwritten(Observer, observer, "rule") else _ffi.NULL,
_lib.pyclingo_observer_weight_rule if _overwritten(Observer, observer, "weight_rule") else _ffi.NULL,
_lib.pyclingo_observer_minimize if _overwritten(Observer, observer, "minimize") else _ffi.NULL,
_lib.pyclingo_observer_project if _overwritten(Observer, observer, "project") else _ffi.NULL,
_lib.pyclingo_observer_output_atom if _overwritten(Observer, observer, "output_atom") else _ffi.NULL,
_lib.pyclingo_observer_output_term if _overwritten(Observer, observer, "output_term") else _ffi.NULL,
_lib.pyclingo_observer_output_csp if _overwritten(Observer, observer, "output_csp") else _ffi.NULL,
_lib.pyclingo_observer_external if _overwritten(Observer, observer, "external") else _ffi.NULL,
_lib.pyclingo_observer_assume if _overwritten(Observer, observer, "assume") else _ffi.NULL,
_lib.pyclingo_observer_heuristic if _overwritten(Observer, observer, "heuristic") else _ffi.NULL,
_lib.pyclingo_observer_acyc_edge if _overwritten(Observer, observer, "acyc_edge") else _ffi.NULL,
_lib.pyclingo_observer_theory_term_number if _overwritten(Observer, observer, "theory_term_number") else _ffi.NULL,
_lib.pyclingo_observer_theory_term_string if _overwritten(Observer, observer, "theory_term_string") else _ffi.NULL,
_lib.pyclingo_observer_theory_term_compound if _overwritten(Observer, observer, "theory_term_compound") else _ffi.NULL,
_lib.pyclingo_observer_theory_element if _overwritten(Observer, observer, "theory_element") else _ffi.NULL,
_lib.pyclingo_observer_theory_atom if _overwritten(Observer, observer, "theory_atom") else _ffi.NULL,
_lib.pyclingo_observer_theory_atom_with_guard if _overwritten(Observer, observer, "theory_atom_with_guard") else _ffi.NULL))
c_data = _ffi.new_handle(_CBData(observer, self._error))
self._mem.append(c_data)
_handle_error(_lib.clingo_control_register_observer(self._rep, c_observer, replace, c_data))
def register_propagator(self, propagator: Propagator) -> None:
'''
Registers the given propagator with all solvers.
Parameters
----------
propagator
The propagator to register.
See Also
--------
clingo.propagator
'''
# pylint: disable=protected-access
c_propagator = _ffi.new('clingo_propagator_t*', (
_lib.pyclingo_propagator_init if _overwritten(Propagator, propagator, "init") else _ffi.NULL,
_lib.pyclingo_propagator_propagate if _overwritten(Propagator, propagator, "propagate") else _ffi.NULL,
_lib.pyclingo_propagator_undo if _overwritten(Propagator, propagator, "undo") else _ffi.NULL,
_lib.pyclingo_propagator_check if _overwritten(Propagator, propagator, "check") else _ffi.NULL,
_lib.pyclingo_propagator_decide if _overwritten(Propagator, propagator, "decide") else _ffi.NULL))
c_data = _ffi.new_handle(_CBData(propagator, self._error))
self._mem.append(c_data)
_handle_error(_lib.clingo_control_register_propagator(self._rep, c_propagator, c_data, False))
def release_external(self, external: Union[Symbol,int]) -> None:
'''
Release an external atom represented by the given symbol or program
literal.
This function causes the corresponding atom to become permanently false
if there is no definition for the atom in the program. Otherwise, the
function has no effect.
Parameters
----------
external
The symbolic atom or program atom to release.
Notes
-----
If the program literal is negative, the corresponding atom is released.
Examples
--------
The following example shows the effect of assigning and releasing and external
atom.
>>> from clingo.symbol import Function
>>> from clingo.control import Control
>>>
>>> ctl = Control()
>>> ctl.add("base", [], "a. #external b.")
>>> ctl.ground([("base", [])])
>>> ctl.assign_external(Function("b"), True)
>>> print(ctl.solve(on_model=print))
b a
SAT
>>> ctl.release_external(Function("b"))
>>> print(ctl.solve(on_model=print))
a
SAT
'''
_handle_error(_lib.clingo_control_release_external(self._rep, self._program_atom(external)))
def solve(self,
assumptions: Sequence[Union[Tuple[Symbol,bool],int]]=[],
on_model: Optional[Callable[[Model],Optional[bool]]]=None,
on_unsat: Optional[Callable[[Sequence[int]],None]]=None,
on_statistics : Optional[Callable[[StatisticsMap,StatisticsMap],None]]=None,
on_finish: Optional[Callable[[SolveResult],None]]=None,
on_core: Optional[Callable[[Sequence[int]],None]]=None,
yield_: bool=False,
async_: bool=False) -> Union[SolveHandle,SolveResult]:
'''
Starts a search.
Parameters
----------
assumptions
List of (atom, boolean) tuples or program literals (see
`clingo.symbolic_atoms.SymbolicAtom.literal`) that serve as
assumptions for the solve call, e.g., solving under assumptions
`[(Function("a"), True)]` only admits answer sets that contain atom `a`.
on_model
Optional callback for intercepting models.
A `clingo.solving.Model` object is passed to the callback. The
search can be interruped from the model callback by returning
False.
on_unsat
Optional callback to intercept lower bounds during optimization.
on_statistics
Optional callback to update statistics.
The step and accumulated statistics are passed as arguments.
on_finish
Optional callback called once search has finished.
A `clingo.solving.SolveResult` also indicating whether the solve
call has been intrrupted is passed to the callback.
on_core
Optional callback called with the assumptions that made a problem
unsatisfiable.
yield_
The resulting `clingo.solving.SolveHandle` is iterable yielding
`clingo.solving.Model` objects.
async_
The solve call and the method `clingo.solving.SolveHandle.resume`
of the returned handle are non-blocking.
Returns
-------
The return value depends on the parameters. If either `yield_` or
`async_` is true, then a handle is returned. Otherwise, a
`clingo.solving.SolveResult` is returned.
See Also
--------
clingo.solving
Notes
-----
If neither `yield_` nor `async_` is set, the function returns a
`clingo.solving.SolveResult` right away.
In gringo or in clingo with lparse or text output enabled, this
function just grounds and returns a `clingo.solving.SolveResult` where
`clingo.solving.SolveResult.unknown` is true.
If this function is used in embedded Python code, you might want to start
clingo using the `--outf=3` option to disable all output from clingo.
Asynchronous solving is only available in clingo with thread support
enabled. Furthermore, the on_model and on_finish callbacks are called
from another thread. To ensure that the methods can be called, make
sure to not use any functions that block Python's GIL indefinitely.
This function as well as blocking functions on the
`clingo.solving.SolveHandle` release the GIL but are not thread-safe.
'''
# pylint: disable=protected-access,dangerous-default-value
self._error.clear()
handler = _SolveEventHandler(on_model, on_unsat, on_statistics, on_finish)
data = _CBData(handler, self._error)
self._handler = _ffi.new_handle(data)
p_ass = _ffi.NULL
if assumptions:
atoms = None
p_ass = _ffi.new('clingo_literal_t[]', len(assumptions))
for i, lit in enumerate(assumptions):
if isinstance(lit, int):
p_ass[i] = lit
else:
if atoms is None:
atoms = self.symbolic_atoms
atom = self.symbolic_atoms[lit[0]]
slit = -1 if atom is None else atom.literal
p_ass[i] = slit if lit[1] else -slit
mode = 0
if yield_:
mode |= _lib.clingo_solve_mode_yield
if async_:
mode |= _lib.clingo_solve_mode_async
handle = SolveHandle(
_c_call('clingo_solve_handle_t*', _lib.clingo_control_solve,
self._rep, mode,
p_ass, len(assumptions),
_lib.pyclingo_solve_event_callback, self._handler,
handler=data),
data)
if not yield_ and not async_:
with handle:
ret = handle.get()
if on_core is not None and ret.unsatisfiable:
on_core(handle.core())
return ret
return handle
@property
def configuration(self) -> Configuration:
'''
Object to change the configuration.
'''
conf = _c_call('clingo_configuration_t*', _lib.clingo_control_configuration, self._rep)
key = _c_call('clingo_id_t', _lib.clingo_configuration_root, conf)
return Configuration(conf, key)
@property
def enable_cleanup(self) -> bool:
'''
Whether to enable automatic calls to `Control.cleanup`.
'''
return _lib.clingo_control_get_enable_cleanup(self._rep)
@enable_cleanup.setter
def enable_cleanup(self, value: bool) -> None:
_handle_error(_lib.clingo_control_set_enable_cleanup(self._rep, value))
@property
def enable_enumeration_assumption(self) -> bool:
'''
Whether do discard or keep learnt information from enumeration modes.
If the enumeration assumption is enabled, then all information learnt from
clasp's various enumeration modes is removed after a solve call. This includes
enumeration of cautious or brave consequences, enumeration of answer sets with
or without projection, or finding optimal models; as well as clauses added with
`clingo.solving.SolveControl.add_clause`.
Notes
-----
Initially the enumeration assumption is enabled.
In general, the enumeration assumption should be enabled whenever there are
multiple calls to solve. Otherwise, the behavior of the solver will be
unpredictable because there are no guarantees which information exactly is
kept. There might be small speed benefits when disabling the enumeration
assumption for single shot solving.
'''
return _lib.clingo_control_get_enable_enumeration_assumption(self._rep)
@enable_enumeration_assumption.setter
def enable_enumeration_assumption(self, value: bool) -> None:
_handle_error(_lib.clingo_control_set_enable_enumeration_assumption(self._rep, value))
@property
def is_conflicting(self) -> bool:
'''
Whether the internal program representation is conflicting.
If this (read-only) property is true, solve calls return immediately with an
unsatisfiable solve result.
Notes
-----
Conflicts first have to be detected, e.g., initial unit propagation results in
an empty clause, or later if an empty clause is resolved during solving. Hence,
the property might be false even if the problem is unsatisfiable.
'''
return _lib.clingo_control_is_conflicting(self._rep)
@property
def statistics(self) -> dict:
'''
A `dict` containing solve statistics of the last solve call.
See Also
--------
clingo.statistics
Notes
-----
The statistics correspond to the `--stats` output of clingo. The detail of the
statistics depends on what level is requested on the command line. Furthermore,
there are some functions like `Control.release_external` that start a new
solving step resetting the current step statistics. It is best to access the
statistics right after solving.
This property is only available in clingo.
'''
stats = _c_call('clingo_statistics_t*', _lib.clingo_control_statistics, self._rep)
p_key = _ffi.new('uint64_t*')
key_root = _c_call(p_key, _lib.clingo_statistics_root, stats)
key_summary = _c_call(p_key, _lib.clingo_statistics_map_at, stats, key_root, "summary".encode())
key_call = _c_call(p_key, _lib.clingo_statistics_map_at, stats, key_summary, "call".encode())
call = _c_call('double', _lib.clingo_statistics_value_get, stats, key_call)
if self._statistics is not None and call != self._statistics_call:
self._statistics = None
if self._statistics is None:
self._statistics_call = call
self._statistics = _statistics(stats, key_root)
return cast(dict, self._statistics)
@property
def symbolic_atoms(self) -> SymbolicAtoms:
'''
An object to inspect the symbolic atoms.
See Also
--------
clingo.symbolic_atoms
'''
return SymbolicAtoms(_c_call('clingo_symbolic_atoms_t*', _lib.clingo_control_symbolic_atoms, self._rep))
@property
def theory_atoms(self) -> Iterator[TheoryAtom]:
'''
An iterator over the theory atoms in a program.
See Also
--------
clingo.theory_atoms
'''
atoms = _c_call('clingo_theory_atoms_t*', _lib.clingo_control_theory_atoms, self._rep)
size = _c_call('size_t', _lib.clingo_theory_atoms_size, atoms)
for idx in range(size):
yield TheoryAtom(atoms, idx)
Classes
class Control (arguments: Sequence[str] = [], logger: Optional[Callable[[MessageCode, str], None]] = None, message_limit: int = 20)
-
Control object for the grounding/solving process.
Parameters
arguments
- Arguments to the grounder and solver.
logger
- Function to intercept messages normally printed to standard error.
message_limit
- The maximum number of messages passed to the logger.
Notes
Note that only gringo options (without
--text
) and clasp's search options are supported. Furthermore, you must not call any functions of aControl
object while a solve call is active.Expand source code
class Control: ''' Control object for the grounding/solving process. Parameters ---------- arguments Arguments to the grounder and solver. logger Function to intercept messages normally printed to standard error. message_limit The maximum number of messages passed to the logger. Notes ----- Note that only gringo options (without `--text`) and clasp's search options are supported. Furthermore, you must not call any functions of a `Control` object while a solve call is active. ''' def __init__(self, arguments: Sequence[str]=[], logger: Optional[Logger]=None, message_limit: int=20): # pylint: disable=protected-access,dangerous-default-value self._free = False self._mem = [] if isinstance(arguments, abc.Sequence): if logger is not None: c_handle = _ffi.new_handle(logger) c_cb = _lib.pyclingo_logger_callback self._mem.append(c_handle) else: c_handle = _ffi.NULL c_cb = _ffi.NULL c_mem = [] c_args = _ffi.new('char*[]', len(arguments)) for i, arg in enumerate(arguments): c_mem.append(_ffi.new("char[]", arg.encode())) c_args[i] = c_mem[-1] self._rep = _c_call('clingo_control_t *', _lib.clingo_control_new, c_args, len(arguments), c_cb, c_handle, message_limit) self._free = True else: self._rep = arguments self._handler = None self._statistics = None self._statistics_call = -1.0 self._error = _Error() def __del__(self): if self._free: _lib.clingo_control_free(self._rep) def add(self, name: str, parameters: Sequence[str], program: str) -> None: ''' Extend the logic program with the given non-ground logic program in string form. Parameters ---------- name The name of program block to add. parameters The parameters of the program block to add. program The non-ground program in string form. See Also -------- Control.ground ''' c_mem = [] c_params = _ffi.new('char*[]', len(parameters)) for i, param in enumerate(parameters): c_mem.append(_ffi.new("char[]", param.encode())) c_params[i] = c_mem[-1] _handle_error(_lib.clingo_control_add(self._rep, name.encode(), c_params, len(parameters), program.encode())) def _program_atom(self, lit: Union[Symbol,int]) -> int: if isinstance(lit, int): return lit satom = self.symbolic_atoms[lit] return 0 if satom is None else satom.literal def assign_external(self, external: Union[Symbol,int], truth: Optional[bool]) -> None: ''' Assign a truth value to an external atom. Parameters ---------- external A symbol or program literal representing the external atom. truth A Boolean fixes the external to the respective truth value; and None leaves its truth value open. See Also -------- Control.release_external, clingo.solving.SolveControl.symbolic_atoms, clingo.symbolic_atoms.SymbolicAtom.is_external Notes ----- The truth value of an external atom can be changed before each solve call. An atom is treated as external if it has been declared using an `#external` directive, and has not been released by calling `Control.release_external` or defined in a logic program with some rule. If the given atom is not external, then the function has no effect. For convenience, the truth assigned to atoms over negative program literals is inverted. ''' if truth is None: val = _lib.clingo_external_type_free elif truth: val = _lib.clingo_external_type_true else: val = _lib.clingo_external_type_false _handle_error(_lib.clingo_control_assign_external(self._rep, self._program_atom(external), val)) def backend(self) -> Backend: ''' Returns a `Backend` object providing a low level interface to extend a logic program. See Also -------- clingo.backend ''' return Backend(_c_call('clingo_backend_t*', _lib.clingo_control_backend, self._rep), self._error) def cleanup(self) -> None: ''' Cleanup the domain used for grounding by incorporating information from the solver. This function cleans up the domain used for grounding. This is done by first simplifying the current program representation (falsifying released external atoms). Afterwards, the top-level implications are used to either remove atoms from the domain or mark them as facts. See Also -------- Control.enable_cleanup Notes ----- Any atoms falsified are completely removed from the logic program. Hence, a definition for such an atom in a successive step introduces a fresh atom. With the current implementation, the function only has an effect if called after solving and before any function is called that starts a new step. Typically, it is not necessary to call this function manually because automatic cleanups are enabled by default. ''' _handle_error(_lib.clingo_control_cleanup(self._rep)) def get_const(self, name: str) -> Optional[Symbol]: ''' Return the symbol for a constant definition of form: #const name = symbol. Parameters ---------- name The name of the constant to retrieve. Returns ------- The function returns `None` if no matching constant definition exists. ''' if not _c_call('bool', _lib.clingo_control_has_const, self._rep, name.encode()): return None return Symbol(_c_call('clingo_symbol_t', _lib.clingo_control_get_const, self._rep, name.encode())) def ground(self, parts: Sequence[Tuple[str,Sequence[Symbol]]], context: Any=None) -> None: ''' Ground the given list of program parts specified by tuples of names and arguments. Parameters ---------- parts List of tuples of program names and program arguments to ground. context A context object whose methods are called during grounding using the `@`-syntax (if omitted, those from the main module are used). Notes ----- Note that parts of a logic program without an explicit `#program` specification are by default put into a program called `base` without arguments. ''' # pylint: disable=protected-access,dangerous-default-value self._error.clear() data = _CBData(context, self._error) c_data = _ffi.new_handle(data) if context else _ffi.NULL c_cb = _lib.pyclingo_ground_callback if context else _ffi.NULL c_mem = [] c_parts = _ffi.new("clingo_part_t[]", len(parts)) for part, c_part in zip(parts, c_parts): c_mem.append(_ffi.new("char[]", part[0].encode())) c_part.name = c_mem[-1] c_mem.append(_ffi.new("clingo_symbol_t[]", len(part[1]))) c_part.params = c_mem[-1] for i, sym in enumerate(part[1]): c_part.params[i] = sym._rep c_part.size = len(part[1]) _handle_error(_lib.clingo_control_ground( self._rep, c_parts, len(parts), c_cb, c_data), data) def interrupt(self) -> None: ''' Interrupt the active solve call. Notes ----- This function is thread-safe and can be called from a signal handler. If no search is active, the subsequent call to `Control.solve` is interrupted. The result of the `Control.solve` method can be used to query if the search was interrupted. ''' _lib.clingo_control_interrupt(self._rep) def load(self, path: str) -> None: ''' Extend the logic program with a (non-ground) logic program in a file. Parameters ---------- path The path of the file to load. ''' _handle_error(_lib.clingo_control_load(self._rep, path.encode())) def register_observer(self, observer: Observer, replace: bool=False) -> None: ''' Registers the given observer to inspect the produced grounding. Parameters ---------- observer The observer to register. See below for a description of the requirede interface. replace If set to true, the output is just passed to the observer and nolonger to the underlying solver (or any previously registered observers). See Also -------- clingo.backend ''' # pylint: disable=protected-access,line-too-long c_observer = _ffi.new('clingo_ground_program_observer_t*', ( _lib.pyclingo_observer_init_program if _overwritten(Observer, observer, "init_program") else _ffi.NULL, _lib.pyclingo_observer_begin_step if _overwritten(Observer, observer, "begin_step") else _ffi.NULL, _lib.pyclingo_observer_end_step if _overwritten(Observer, observer, "end_step") else _ffi.NULL, _lib.pyclingo_observer_rule if _overwritten(Observer, observer, "rule") else _ffi.NULL, _lib.pyclingo_observer_weight_rule if _overwritten(Observer, observer, "weight_rule") else _ffi.NULL, _lib.pyclingo_observer_minimize if _overwritten(Observer, observer, "minimize") else _ffi.NULL, _lib.pyclingo_observer_project if _overwritten(Observer, observer, "project") else _ffi.NULL, _lib.pyclingo_observer_output_atom if _overwritten(Observer, observer, "output_atom") else _ffi.NULL, _lib.pyclingo_observer_output_term if _overwritten(Observer, observer, "output_term") else _ffi.NULL, _lib.pyclingo_observer_output_csp if _overwritten(Observer, observer, "output_csp") else _ffi.NULL, _lib.pyclingo_observer_external if _overwritten(Observer, observer, "external") else _ffi.NULL, _lib.pyclingo_observer_assume if _overwritten(Observer, observer, "assume") else _ffi.NULL, _lib.pyclingo_observer_heuristic if _overwritten(Observer, observer, "heuristic") else _ffi.NULL, _lib.pyclingo_observer_acyc_edge if _overwritten(Observer, observer, "acyc_edge") else _ffi.NULL, _lib.pyclingo_observer_theory_term_number if _overwritten(Observer, observer, "theory_term_number") else _ffi.NULL, _lib.pyclingo_observer_theory_term_string if _overwritten(Observer, observer, "theory_term_string") else _ffi.NULL, _lib.pyclingo_observer_theory_term_compound if _overwritten(Observer, observer, "theory_term_compound") else _ffi.NULL, _lib.pyclingo_observer_theory_element if _overwritten(Observer, observer, "theory_element") else _ffi.NULL, _lib.pyclingo_observer_theory_atom if _overwritten(Observer, observer, "theory_atom") else _ffi.NULL, _lib.pyclingo_observer_theory_atom_with_guard if _overwritten(Observer, observer, "theory_atom_with_guard") else _ffi.NULL)) c_data = _ffi.new_handle(_CBData(observer, self._error)) self._mem.append(c_data) _handle_error(_lib.clingo_control_register_observer(self._rep, c_observer, replace, c_data)) def register_propagator(self, propagator: Propagator) -> None: ''' Registers the given propagator with all solvers. Parameters ---------- propagator The propagator to register. See Also -------- clingo.propagator ''' # pylint: disable=protected-access c_propagator = _ffi.new('clingo_propagator_t*', ( _lib.pyclingo_propagator_init if _overwritten(Propagator, propagator, "init") else _ffi.NULL, _lib.pyclingo_propagator_propagate if _overwritten(Propagator, propagator, "propagate") else _ffi.NULL, _lib.pyclingo_propagator_undo if _overwritten(Propagator, propagator, "undo") else _ffi.NULL, _lib.pyclingo_propagator_check if _overwritten(Propagator, propagator, "check") else _ffi.NULL, _lib.pyclingo_propagator_decide if _overwritten(Propagator, propagator, "decide") else _ffi.NULL)) c_data = _ffi.new_handle(_CBData(propagator, self._error)) self._mem.append(c_data) _handle_error(_lib.clingo_control_register_propagator(self._rep, c_propagator, c_data, False)) def release_external(self, external: Union[Symbol,int]) -> None: ''' Release an external atom represented by the given symbol or program literal. This function causes the corresponding atom to become permanently false if there is no definition for the atom in the program. Otherwise, the function has no effect. Parameters ---------- external The symbolic atom or program atom to release. Notes ----- If the program literal is negative, the corresponding atom is released. Examples -------- The following example shows the effect of assigning and releasing and external atom. >>> from clingo.symbol import Function >>> from clingo.control import Control >>> >>> ctl = Control() >>> ctl.add("base", [], "a. #external b.") >>> ctl.ground([("base", [])]) >>> ctl.assign_external(Function("b"), True) >>> print(ctl.solve(on_model=print)) b a SAT >>> ctl.release_external(Function("b")) >>> print(ctl.solve(on_model=print)) a SAT ''' _handle_error(_lib.clingo_control_release_external(self._rep, self._program_atom(external))) def solve(self, assumptions: Sequence[Union[Tuple[Symbol,bool],int]]=[], on_model: Optional[Callable[[Model],Optional[bool]]]=None, on_unsat: Optional[Callable[[Sequence[int]],None]]=None, on_statistics : Optional[Callable[[StatisticsMap,StatisticsMap],None]]=None, on_finish: Optional[Callable[[SolveResult],None]]=None, on_core: Optional[Callable[[Sequence[int]],None]]=None, yield_: bool=False, async_: bool=False) -> Union[SolveHandle,SolveResult]: ''' Starts a search. Parameters ---------- assumptions List of (atom, boolean) tuples or program literals (see `clingo.symbolic_atoms.SymbolicAtom.literal`) that serve as assumptions for the solve call, e.g., solving under assumptions `[(Function("a"), True)]` only admits answer sets that contain atom `a`. on_model Optional callback for intercepting models. A `clingo.solving.Model` object is passed to the callback. The search can be interruped from the model callback by returning False. on_unsat Optional callback to intercept lower bounds during optimization. on_statistics Optional callback to update statistics. The step and accumulated statistics are passed as arguments. on_finish Optional callback called once search has finished. A `clingo.solving.SolveResult` also indicating whether the solve call has been intrrupted is passed to the callback. on_core Optional callback called with the assumptions that made a problem unsatisfiable. yield_ The resulting `clingo.solving.SolveHandle` is iterable yielding `clingo.solving.Model` objects. async_ The solve call and the method `clingo.solving.SolveHandle.resume` of the returned handle are non-blocking. Returns ------- The return value depends on the parameters. If either `yield_` or `async_` is true, then a handle is returned. Otherwise, a `clingo.solving.SolveResult` is returned. See Also -------- clingo.solving Notes ----- If neither `yield_` nor `async_` is set, the function returns a `clingo.solving.SolveResult` right away. In gringo or in clingo with lparse or text output enabled, this function just grounds and returns a `clingo.solving.SolveResult` where `clingo.solving.SolveResult.unknown` is true. If this function is used in embedded Python code, you might want to start clingo using the `--outf=3` option to disable all output from clingo. Asynchronous solving is only available in clingo with thread support enabled. Furthermore, the on_model and on_finish callbacks are called from another thread. To ensure that the methods can be called, make sure to not use any functions that block Python's GIL indefinitely. This function as well as blocking functions on the `clingo.solving.SolveHandle` release the GIL but are not thread-safe. ''' # pylint: disable=protected-access,dangerous-default-value self._error.clear() handler = _SolveEventHandler(on_model, on_unsat, on_statistics, on_finish) data = _CBData(handler, self._error) self._handler = _ffi.new_handle(data) p_ass = _ffi.NULL if assumptions: atoms = None p_ass = _ffi.new('clingo_literal_t[]', len(assumptions)) for i, lit in enumerate(assumptions): if isinstance(lit, int): p_ass[i] = lit else: if atoms is None: atoms = self.symbolic_atoms atom = self.symbolic_atoms[lit[0]] slit = -1 if atom is None else atom.literal p_ass[i] = slit if lit[1] else -slit mode = 0 if yield_: mode |= _lib.clingo_solve_mode_yield if async_: mode |= _lib.clingo_solve_mode_async handle = SolveHandle( _c_call('clingo_solve_handle_t*', _lib.clingo_control_solve, self._rep, mode, p_ass, len(assumptions), _lib.pyclingo_solve_event_callback, self._handler, handler=data), data) if not yield_ and not async_: with handle: ret = handle.get() if on_core is not None and ret.unsatisfiable: on_core(handle.core()) return ret return handle @property def configuration(self) -> Configuration: ''' Object to change the configuration. ''' conf = _c_call('clingo_configuration_t*', _lib.clingo_control_configuration, self._rep) key = _c_call('clingo_id_t', _lib.clingo_configuration_root, conf) return Configuration(conf, key) @property def enable_cleanup(self) -> bool: ''' Whether to enable automatic calls to `Control.cleanup`. ''' return _lib.clingo_control_get_enable_cleanup(self._rep) @enable_cleanup.setter def enable_cleanup(self, value: bool) -> None: _handle_error(_lib.clingo_control_set_enable_cleanup(self._rep, value)) @property def enable_enumeration_assumption(self) -> bool: ''' Whether do discard or keep learnt information from enumeration modes. If the enumeration assumption is enabled, then all information learnt from clasp's various enumeration modes is removed after a solve call. This includes enumeration of cautious or brave consequences, enumeration of answer sets with or without projection, or finding optimal models; as well as clauses added with `clingo.solving.SolveControl.add_clause`. Notes ----- Initially the enumeration assumption is enabled. In general, the enumeration assumption should be enabled whenever there are multiple calls to solve. Otherwise, the behavior of the solver will be unpredictable because there are no guarantees which information exactly is kept. There might be small speed benefits when disabling the enumeration assumption for single shot solving. ''' return _lib.clingo_control_get_enable_enumeration_assumption(self._rep) @enable_enumeration_assumption.setter def enable_enumeration_assumption(self, value: bool) -> None: _handle_error(_lib.clingo_control_set_enable_enumeration_assumption(self._rep, value)) @property def is_conflicting(self) -> bool: ''' Whether the internal program representation is conflicting. If this (read-only) property is true, solve calls return immediately with an unsatisfiable solve result. Notes ----- Conflicts first have to be detected, e.g., initial unit propagation results in an empty clause, or later if an empty clause is resolved during solving. Hence, the property might be false even if the problem is unsatisfiable. ''' return _lib.clingo_control_is_conflicting(self._rep) @property def statistics(self) -> dict: ''' A `dict` containing solve statistics of the last solve call. See Also -------- clingo.statistics Notes ----- The statistics correspond to the `--stats` output of clingo. The detail of the statistics depends on what level is requested on the command line. Furthermore, there are some functions like `Control.release_external` that start a new solving step resetting the current step statistics. It is best to access the statistics right after solving. This property is only available in clingo. ''' stats = _c_call('clingo_statistics_t*', _lib.clingo_control_statistics, self._rep) p_key = _ffi.new('uint64_t*') key_root = _c_call(p_key, _lib.clingo_statistics_root, stats) key_summary = _c_call(p_key, _lib.clingo_statistics_map_at, stats, key_root, "summary".encode()) key_call = _c_call(p_key, _lib.clingo_statistics_map_at, stats, key_summary, "call".encode()) call = _c_call('double', _lib.clingo_statistics_value_get, stats, key_call) if self._statistics is not None and call != self._statistics_call: self._statistics = None if self._statistics is None: self._statistics_call = call self._statistics = _statistics(stats, key_root) return cast(dict, self._statistics) @property def symbolic_atoms(self) -> SymbolicAtoms: ''' An object to inspect the symbolic atoms. See Also -------- clingo.symbolic_atoms ''' return SymbolicAtoms(_c_call('clingo_symbolic_atoms_t*', _lib.clingo_control_symbolic_atoms, self._rep)) @property def theory_atoms(self) -> Iterator[TheoryAtom]: ''' An iterator over the theory atoms in a program. See Also -------- clingo.theory_atoms ''' atoms = _c_call('clingo_theory_atoms_t*', _lib.clingo_control_theory_atoms, self._rep) size = _c_call('size_t', _lib.clingo_theory_atoms_size, atoms) for idx in range(size): yield TheoryAtom(atoms, idx)
Instance variables
var configuration : Configuration
-
Object to change the configuration.
Expand source code
@property def configuration(self) -> Configuration: ''' Object to change the configuration. ''' conf = _c_call('clingo_configuration_t*', _lib.clingo_control_configuration, self._rep) key = _c_call('clingo_id_t', _lib.clingo_configuration_root, conf) return Configuration(conf, key)
var enable_cleanup : bool
-
Whether to enable automatic calls to
Control.cleanup()
.Expand source code
@property def enable_cleanup(self) -> bool: ''' Whether to enable automatic calls to `Control.cleanup`. ''' return _lib.clingo_control_get_enable_cleanup(self._rep)
var enable_enumeration_assumption : bool
-
Whether do discard or keep learnt information from enumeration modes.
If the enumeration assumption is enabled, then all information learnt from clasp's various enumeration modes is removed after a solve call. This includes enumeration of cautious or brave consequences, enumeration of answer sets with or without projection, or finding optimal models; as well as clauses added with
SolveControl.add_clause()
.Notes
Initially the enumeration assumption is enabled.
In general, the enumeration assumption should be enabled whenever there are multiple calls to solve. Otherwise, the behavior of the solver will be unpredictable because there are no guarantees which information exactly is kept. There might be small speed benefits when disabling the enumeration assumption for single shot solving.
Expand source code
@property def enable_enumeration_assumption(self) -> bool: ''' Whether do discard or keep learnt information from enumeration modes. If the enumeration assumption is enabled, then all information learnt from clasp's various enumeration modes is removed after a solve call. This includes enumeration of cautious or brave consequences, enumeration of answer sets with or without projection, or finding optimal models; as well as clauses added with `clingo.solving.SolveControl.add_clause`. Notes ----- Initially the enumeration assumption is enabled. In general, the enumeration assumption should be enabled whenever there are multiple calls to solve. Otherwise, the behavior of the solver will be unpredictable because there are no guarantees which information exactly is kept. There might be small speed benefits when disabling the enumeration assumption for single shot solving. ''' return _lib.clingo_control_get_enable_enumeration_assumption(self._rep)
var is_conflicting : bool
-
Whether the internal program representation is conflicting.
If this (read-only) property is true, solve calls return immediately with an unsatisfiable solve result.
Notes
Conflicts first have to be detected, e.g., initial unit propagation results in an empty clause, or later if an empty clause is resolved during solving. Hence, the property might be false even if the problem is unsatisfiable.
Expand source code
@property def is_conflicting(self) -> bool: ''' Whether the internal program representation is conflicting. If this (read-only) property is true, solve calls return immediately with an unsatisfiable solve result. Notes ----- Conflicts first have to be detected, e.g., initial unit propagation results in an empty clause, or later if an empty clause is resolved during solving. Hence, the property might be false even if the problem is unsatisfiable. ''' return _lib.clingo_control_is_conflicting(self._rep)
var statistics : dict
-
A
dict
containing solve statistics of the last solve call.See Also
Notes
The statistics correspond to the
--stats
output of clingo. The detail of the statistics depends on what level is requested on the command line. Furthermore, there are some functions likeControl.release_external()
that start a new solving step resetting the current step statistics. It is best to access the statistics right after solving.This property is only available in clingo.
Expand source code
@property def statistics(self) -> dict: ''' A `dict` containing solve statistics of the last solve call. See Also -------- clingo.statistics Notes ----- The statistics correspond to the `--stats` output of clingo. The detail of the statistics depends on what level is requested on the command line. Furthermore, there are some functions like `Control.release_external` that start a new solving step resetting the current step statistics. It is best to access the statistics right after solving. This property is only available in clingo. ''' stats = _c_call('clingo_statistics_t*', _lib.clingo_control_statistics, self._rep) p_key = _ffi.new('uint64_t*') key_root = _c_call(p_key, _lib.clingo_statistics_root, stats) key_summary = _c_call(p_key, _lib.clingo_statistics_map_at, stats, key_root, "summary".encode()) key_call = _c_call(p_key, _lib.clingo_statistics_map_at, stats, key_summary, "call".encode()) call = _c_call('double', _lib.clingo_statistics_value_get, stats, key_call) if self._statistics is not None and call != self._statistics_call: self._statistics = None if self._statistics is None: self._statistics_call = call self._statistics = _statistics(stats, key_root) return cast(dict, self._statistics)
var symbolic_atoms : SymbolicAtoms
-
Expand source code
@property def symbolic_atoms(self) -> SymbolicAtoms: ''' An object to inspect the symbolic atoms. See Also -------- clingo.symbolic_atoms ''' return SymbolicAtoms(_c_call('clingo_symbolic_atoms_t*', _lib.clingo_control_symbolic_atoms, self._rep))
var theory_atoms : Iterator[TheoryAtom]
-
Expand source code
@property def theory_atoms(self) -> Iterator[TheoryAtom]: ''' An iterator over the theory atoms in a program. See Also -------- clingo.theory_atoms ''' atoms = _c_call('clingo_theory_atoms_t*', _lib.clingo_control_theory_atoms, self._rep) size = _c_call('size_t', _lib.clingo_theory_atoms_size, atoms) for idx in range(size): yield TheoryAtom(atoms, idx)
Methods
def add(self, name: str, parameters: Sequence[str], program: str) ‑> None
-
Extend the logic program with the given non-ground logic program in string form.
Parameters
name
- The name of program block to add.
parameters
- The parameters of the program block to add.
program
- The non-ground program in string form.
See Also
Expand source code
def add(self, name: str, parameters: Sequence[str], program: str) -> None: ''' Extend the logic program with the given non-ground logic program in string form. Parameters ---------- name The name of program block to add. parameters The parameters of the program block to add. program The non-ground program in string form. See Also -------- Control.ground ''' c_mem = [] c_params = _ffi.new('char*[]', len(parameters)) for i, param in enumerate(parameters): c_mem.append(_ffi.new("char[]", param.encode())) c_params[i] = c_mem[-1] _handle_error(_lib.clingo_control_add(self._rep, name.encode(), c_params, len(parameters), program.encode()))
def assign_external(self, external: Union[Symbol, int], truth: Optional[bool]) ‑> None
-
Assign a truth value to an external atom.
Parameters
external
- A symbol or program literal representing the external atom.
truth
- A Boolean fixes the external to the respective truth value; and None leaves its truth value open.
See Also
Control.release_external()
,SolveControl.symbolic_atoms,
SymbolicAtom.is_external
Notes
The truth value of an external atom can be changed before each solve call. An atom is treated as external if it has been declared using an
#external
directive, and has not been released by callingControl.release_external()
or defined in a logic program with some rule. If the given atom is not external, then the function has no effect.For convenience, the truth assigned to atoms over negative program literals is inverted.
Expand source code
def assign_external(self, external: Union[Symbol,int], truth: Optional[bool]) -> None: ''' Assign a truth value to an external atom. Parameters ---------- external A symbol or program literal representing the external atom. truth A Boolean fixes the external to the respective truth value; and None leaves its truth value open. See Also -------- Control.release_external, clingo.solving.SolveControl.symbolic_atoms, clingo.symbolic_atoms.SymbolicAtom.is_external Notes ----- The truth value of an external atom can be changed before each solve call. An atom is treated as external if it has been declared using an `#external` directive, and has not been released by calling `Control.release_external` or defined in a logic program with some rule. If the given atom is not external, then the function has no effect. For convenience, the truth assigned to atoms over negative program literals is inverted. ''' if truth is None: val = _lib.clingo_external_type_free elif truth: val = _lib.clingo_external_type_true else: val = _lib.clingo_external_type_false _handle_error(_lib.clingo_control_assign_external(self._rep, self._program_atom(external), val))
def backend(self) ‑> Backend
-
Returns a
Backend
object providing a low level interface to extend a logic program.See Also
Expand source code
def backend(self) -> Backend: ''' Returns a `Backend` object providing a low level interface to extend a logic program. See Also -------- clingo.backend ''' return Backend(_c_call('clingo_backend_t*', _lib.clingo_control_backend, self._rep), self._error)
def cleanup(self) ‑> None
-
Cleanup the domain used for grounding by incorporating information from the solver.
This function cleans up the domain used for grounding. This is done by first simplifying the current program representation (falsifying released external atoms). Afterwards, the top-level implications are used to either remove atoms from the domain or mark them as facts.
See Also
Notes
Any atoms falsified are completely removed from the logic program. Hence, a definition for such an atom in a successive step introduces a fresh atom.
With the current implementation, the function only has an effect if called after solving and before any function is called that starts a new step.
Typically, it is not necessary to call this function manually because automatic cleanups are enabled by default.
Expand source code
def cleanup(self) -> None: ''' Cleanup the domain used for grounding by incorporating information from the solver. This function cleans up the domain used for grounding. This is done by first simplifying the current program representation (falsifying released external atoms). Afterwards, the top-level implications are used to either remove atoms from the domain or mark them as facts. See Also -------- Control.enable_cleanup Notes ----- Any atoms falsified are completely removed from the logic program. Hence, a definition for such an atom in a successive step introduces a fresh atom. With the current implementation, the function only has an effect if called after solving and before any function is called that starts a new step. Typically, it is not necessary to call this function manually because automatic cleanups are enabled by default. ''' _handle_error(_lib.clingo_control_cleanup(self._rep))
def get_const(self, name: str) ‑> Optional[Symbol]
-
Return the symbol for a constant definition of form:
#const name = symbol.
Parameters
name
- The name of the constant to retrieve.
Returns
The function returns
None
if no matching constant definition exists.Expand source code
def get_const(self, name: str) -> Optional[Symbol]: ''' Return the symbol for a constant definition of form: #const name = symbol. Parameters ---------- name The name of the constant to retrieve. Returns ------- The function returns `None` if no matching constant definition exists. ''' if not _c_call('bool', _lib.clingo_control_has_const, self._rep, name.encode()): return None return Symbol(_c_call('clingo_symbol_t', _lib.clingo_control_get_const, self._rep, name.encode()))
def ground(self, parts: Sequence[Tuple[str, Sequence[Symbol]]], context: Any = None) ‑> None
-
Ground the given list of program parts specified by tuples of names and arguments.
Parameters
parts
- List of tuples of program names and program arguments to ground.
context
- A context object whose methods are called during grounding using
the
@
-syntax (if omitted, those from the main module are used).
Notes
Note that parts of a logic program without an explicit
#program
specification are by default put into a program calledbase
without arguments.Expand source code
def ground(self, parts: Sequence[Tuple[str,Sequence[Symbol]]], context: Any=None) -> None: ''' Ground the given list of program parts specified by tuples of names and arguments. Parameters ---------- parts List of tuples of program names and program arguments to ground. context A context object whose methods are called during grounding using the `@`-syntax (if omitted, those from the main module are used). Notes ----- Note that parts of a logic program without an explicit `#program` specification are by default put into a program called `base` without arguments. ''' # pylint: disable=protected-access,dangerous-default-value self._error.clear() data = _CBData(context, self._error) c_data = _ffi.new_handle(data) if context else _ffi.NULL c_cb = _lib.pyclingo_ground_callback if context else _ffi.NULL c_mem = [] c_parts = _ffi.new("clingo_part_t[]", len(parts)) for part, c_part in zip(parts, c_parts): c_mem.append(_ffi.new("char[]", part[0].encode())) c_part.name = c_mem[-1] c_mem.append(_ffi.new("clingo_symbol_t[]", len(part[1]))) c_part.params = c_mem[-1] for i, sym in enumerate(part[1]): c_part.params[i] = sym._rep c_part.size = len(part[1]) _handle_error(_lib.clingo_control_ground( self._rep, c_parts, len(parts), c_cb, c_data), data)
def interrupt(self) ‑> None
-
Interrupt the active solve call.
Notes
This function is thread-safe and can be called from a signal handler. If no search is active, the subsequent call to
Control.solve()
is interrupted. The result of theControl.solve()
method can be used to query if the search was interrupted.Expand source code
def interrupt(self) -> None: ''' Interrupt the active solve call. Notes ----- This function is thread-safe and can be called from a signal handler. If no search is active, the subsequent call to `Control.solve` is interrupted. The result of the `Control.solve` method can be used to query if the search was interrupted. ''' _lib.clingo_control_interrupt(self._rep)
def load(self, path: str) ‑> None
-
Extend the logic program with a (non-ground) logic program in a file.
Parameters
path
- The path of the file to load.
Expand source code
def load(self, path: str) -> None: ''' Extend the logic program with a (non-ground) logic program in a file. Parameters ---------- path The path of the file to load. ''' _handle_error(_lib.clingo_control_load(self._rep, path.encode()))
def register_observer(self, observer: Observer, replace: bool = False) ‑> None
-
Registers the given observer to inspect the produced grounding.
Parameters
observer
- The observer to register. See below for a description of the requirede interface.
replace
- If set to true, the output is just passed to the observer and nolonger to the underlying solver (or any previously registered observers).
See Also
Expand source code
def register_observer(self, observer: Observer, replace: bool=False) -> None: ''' Registers the given observer to inspect the produced grounding. Parameters ---------- observer The observer to register. See below for a description of the requirede interface. replace If set to true, the output is just passed to the observer and nolonger to the underlying solver (or any previously registered observers). See Also -------- clingo.backend ''' # pylint: disable=protected-access,line-too-long c_observer = _ffi.new('clingo_ground_program_observer_t*', ( _lib.pyclingo_observer_init_program if _overwritten(Observer, observer, "init_program") else _ffi.NULL, _lib.pyclingo_observer_begin_step if _overwritten(Observer, observer, "begin_step") else _ffi.NULL, _lib.pyclingo_observer_end_step if _overwritten(Observer, observer, "end_step") else _ffi.NULL, _lib.pyclingo_observer_rule if _overwritten(Observer, observer, "rule") else _ffi.NULL, _lib.pyclingo_observer_weight_rule if _overwritten(Observer, observer, "weight_rule") else _ffi.NULL, _lib.pyclingo_observer_minimize if _overwritten(Observer, observer, "minimize") else _ffi.NULL, _lib.pyclingo_observer_project if _overwritten(Observer, observer, "project") else _ffi.NULL, _lib.pyclingo_observer_output_atom if _overwritten(Observer, observer, "output_atom") else _ffi.NULL, _lib.pyclingo_observer_output_term if _overwritten(Observer, observer, "output_term") else _ffi.NULL, _lib.pyclingo_observer_output_csp if _overwritten(Observer, observer, "output_csp") else _ffi.NULL, _lib.pyclingo_observer_external if _overwritten(Observer, observer, "external") else _ffi.NULL, _lib.pyclingo_observer_assume if _overwritten(Observer, observer, "assume") else _ffi.NULL, _lib.pyclingo_observer_heuristic if _overwritten(Observer, observer, "heuristic") else _ffi.NULL, _lib.pyclingo_observer_acyc_edge if _overwritten(Observer, observer, "acyc_edge") else _ffi.NULL, _lib.pyclingo_observer_theory_term_number if _overwritten(Observer, observer, "theory_term_number") else _ffi.NULL, _lib.pyclingo_observer_theory_term_string if _overwritten(Observer, observer, "theory_term_string") else _ffi.NULL, _lib.pyclingo_observer_theory_term_compound if _overwritten(Observer, observer, "theory_term_compound") else _ffi.NULL, _lib.pyclingo_observer_theory_element if _overwritten(Observer, observer, "theory_element") else _ffi.NULL, _lib.pyclingo_observer_theory_atom if _overwritten(Observer, observer, "theory_atom") else _ffi.NULL, _lib.pyclingo_observer_theory_atom_with_guard if _overwritten(Observer, observer, "theory_atom_with_guard") else _ffi.NULL)) c_data = _ffi.new_handle(_CBData(observer, self._error)) self._mem.append(c_data) _handle_error(_lib.clingo_control_register_observer(self._rep, c_observer, replace, c_data))
def register_propagator(self, propagator: Propagator) ‑> None
-
Registers the given propagator with all solvers.
Parameters
propagator
- The propagator to register.
See Also
Expand source code
def register_propagator(self, propagator: Propagator) -> None: ''' Registers the given propagator with all solvers. Parameters ---------- propagator The propagator to register. See Also -------- clingo.propagator ''' # pylint: disable=protected-access c_propagator = _ffi.new('clingo_propagator_t*', ( _lib.pyclingo_propagator_init if _overwritten(Propagator, propagator, "init") else _ffi.NULL, _lib.pyclingo_propagator_propagate if _overwritten(Propagator, propagator, "propagate") else _ffi.NULL, _lib.pyclingo_propagator_undo if _overwritten(Propagator, propagator, "undo") else _ffi.NULL, _lib.pyclingo_propagator_check if _overwritten(Propagator, propagator, "check") else _ffi.NULL, _lib.pyclingo_propagator_decide if _overwritten(Propagator, propagator, "decide") else _ffi.NULL)) c_data = _ffi.new_handle(_CBData(propagator, self._error)) self._mem.append(c_data) _handle_error(_lib.clingo_control_register_propagator(self._rep, c_propagator, c_data, False))
def release_external(self, external: Union[Symbol, int]) ‑> None
-
Release an external atom represented by the given symbol or program literal.
This function causes the corresponding atom to become permanently false if there is no definition for the atom in the program. Otherwise, the function has no effect.
Parameters
external
- The symbolic atom or program atom to release.
Notes
If the program literal is negative, the corresponding atom is released.
Examples
The following example shows the effect of assigning and releasing and external atom.
>>> from clingo.symbol import Function >>> from clingo.control import Control >>> >>> ctl = Control() >>> ctl.add("base", [], "a. #external b.") >>> ctl.ground([("base", [])]) >>> ctl.assign_external(Function("b"), True) >>> print(ctl.solve(on_model=print)) b a SAT >>> ctl.release_external(Function("b")) >>> print(ctl.solve(on_model=print)) a SAT
Expand source code
def release_external(self, external: Union[Symbol,int]) -> None: ''' Release an external atom represented by the given symbol or program literal. This function causes the corresponding atom to become permanently false if there is no definition for the atom in the program. Otherwise, the function has no effect. Parameters ---------- external The symbolic atom or program atom to release. Notes ----- If the program literal is negative, the corresponding atom is released. Examples -------- The following example shows the effect of assigning and releasing and external atom. >>> from clingo.symbol import Function >>> from clingo.control import Control >>> >>> ctl = Control() >>> ctl.add("base", [], "a. #external b.") >>> ctl.ground([("base", [])]) >>> ctl.assign_external(Function("b"), True) >>> print(ctl.solve(on_model=print)) b a SAT >>> ctl.release_external(Function("b")) >>> print(ctl.solve(on_model=print)) a SAT ''' _handle_error(_lib.clingo_control_release_external(self._rep, self._program_atom(external)))
def solve(self, assumptions: Sequence[Union[Tuple[Symbol, bool], int]] = [], on_model: Optional[Callable[[Model], Optional[bool]]] = None, on_unsat: Optional[Callable[[Sequence[int]], None]] = None, on_statistics: Optional[Callable[[StatisticsMap, StatisticsMap], None]] = None, on_finish: Optional[Callable[[SolveResult], None]] = None, on_core: Optional[Callable[[Sequence[int]], None]] = None, yield_: bool = False, async_: bool = False) ‑> Union[SolveHandle, SolveResult]
-
Starts a search.
Parameters
assumptions
- List of (atom, boolean) tuples or program literals (see
SymbolicAtom.literal
) that serve as assumptions for the solve call, e.g., solving under assumptions[(Function("a"), True)]
only admits answer sets that contain atoma
. on_model
- Optional callback for intercepting models.
A
Model
object is passed to the callback. The search can be interruped from the model callback by returning False. on_unsat
- Optional callback to intercept lower bounds during optimization.
on_statistics
- Optional callback to update statistics. The step and accumulated statistics are passed as arguments.
on_finish
- Optional callback called once search has finished.
A
SolveResult
also indicating whether the solve call has been intrrupted is passed to the callback. on_core
- Optional callback called with the assumptions that made a problem unsatisfiable.
yield_
- The resulting
SolveHandle
is iterable yieldingModel
objects. async_
- The solve call and the method
SolveHandle.resume()
of the returned handle are non-blocking.
Returns
The return value depends on the parameters. If either
yield_
orasync_
is true, then a handle is returned. Otherwise, aSolveResult
is returned.See Also
Notes
If neither
yield_
norasync_
is set, the function returns aSolveResult
right away.In gringo or in clingo with lparse or text output enabled, this function just grounds and returns a
SolveResult
whereSolveResult.unknown
is true.If this function is used in embedded Python code, you might want to start clingo using the
--outf=3
option to disable all output from clingo.Asynchronous solving is only available in clingo with thread support enabled. Furthermore, the on_model and on_finish callbacks are called from another thread. To ensure that the methods can be called, make sure to not use any functions that block Python's GIL indefinitely.
This function as well as blocking functions on the
SolveHandle
release the GIL but are not thread-safe.Expand source code
def solve(self, assumptions: Sequence[Union[Tuple[Symbol,bool],int]]=[], on_model: Optional[Callable[[Model],Optional[bool]]]=None, on_unsat: Optional[Callable[[Sequence[int]],None]]=None, on_statistics : Optional[Callable[[StatisticsMap,StatisticsMap],None]]=None, on_finish: Optional[Callable[[SolveResult],None]]=None, on_core: Optional[Callable[[Sequence[int]],None]]=None, yield_: bool=False, async_: bool=False) -> Union[SolveHandle,SolveResult]: ''' Starts a search. Parameters ---------- assumptions List of (atom, boolean) tuples or program literals (see `clingo.symbolic_atoms.SymbolicAtom.literal`) that serve as assumptions for the solve call, e.g., solving under assumptions `[(Function("a"), True)]` only admits answer sets that contain atom `a`. on_model Optional callback for intercepting models. A `clingo.solving.Model` object is passed to the callback. The search can be interruped from the model callback by returning False. on_unsat Optional callback to intercept lower bounds during optimization. on_statistics Optional callback to update statistics. The step and accumulated statistics are passed as arguments. on_finish Optional callback called once search has finished. A `clingo.solving.SolveResult` also indicating whether the solve call has been intrrupted is passed to the callback. on_core Optional callback called with the assumptions that made a problem unsatisfiable. yield_ The resulting `clingo.solving.SolveHandle` is iterable yielding `clingo.solving.Model` objects. async_ The solve call and the method `clingo.solving.SolveHandle.resume` of the returned handle are non-blocking. Returns ------- The return value depends on the parameters. If either `yield_` or `async_` is true, then a handle is returned. Otherwise, a `clingo.solving.SolveResult` is returned. See Also -------- clingo.solving Notes ----- If neither `yield_` nor `async_` is set, the function returns a `clingo.solving.SolveResult` right away. In gringo or in clingo with lparse or text output enabled, this function just grounds and returns a `clingo.solving.SolveResult` where `clingo.solving.SolveResult.unknown` is true. If this function is used in embedded Python code, you might want to start clingo using the `--outf=3` option to disable all output from clingo. Asynchronous solving is only available in clingo with thread support enabled. Furthermore, the on_model and on_finish callbacks are called from another thread. To ensure that the methods can be called, make sure to not use any functions that block Python's GIL indefinitely. This function as well as blocking functions on the `clingo.solving.SolveHandle` release the GIL but are not thread-safe. ''' # pylint: disable=protected-access,dangerous-default-value self._error.clear() handler = _SolveEventHandler(on_model, on_unsat, on_statistics, on_finish) data = _CBData(handler, self._error) self._handler = _ffi.new_handle(data) p_ass = _ffi.NULL if assumptions: atoms = None p_ass = _ffi.new('clingo_literal_t[]', len(assumptions)) for i, lit in enumerate(assumptions): if isinstance(lit, int): p_ass[i] = lit else: if atoms is None: atoms = self.symbolic_atoms atom = self.symbolic_atoms[lit[0]] slit = -1 if atom is None else atom.literal p_ass[i] = slit if lit[1] else -slit mode = 0 if yield_: mode |= _lib.clingo_solve_mode_yield if async_: mode |= _lib.clingo_solve_mode_async handle = SolveHandle( _c_call('clingo_solve_handle_t*', _lib.clingo_control_solve, self._rep, mode, p_ass, len(assumptions), _lib.pyclingo_solve_event_callback, self._handler, handler=data), data) if not yield_ and not async_: with handle: ret = handle.get() if on_core is not None and ret.unsatisfiable: on_core(handle.core()) return ret return handle